
          Quantum Algorithms on Graphs

                                                                    Asaf Ferber, UC, Irvine. 

                                           

 *Research is partially supported by AFOSR. 



General Introduction to Quantum Computing
Quantum computing is a transformative field that processes 
information based on the principles of quantum mechanics, 
such as superposition and entanglement. Unlike classical bits, 
which represent either a 0 or a 1, qubits can exist in multiple 
states simultaneously, enabling quantum computers to perform 
many calculations in parallel.

The field's origins trace back to the 1980s, with foundational 
contributions from pioneers like Richard Feynman and David 
Deutsch, who recognized that classical computers struggle to 
simulate quantum systems. Feynman’s vision was to use 
quantum computers to model quantum phenomena efficiently, 
while Deutsch proposed the idea of a universal quantum 
computer, capable of solving problems beyond the reach of 
classical machines.



General Introduction to Quantum Computing

Quantum computing has the potential to revolutionize multiple fields:

● Cryptography: Quantum algorithms, such as Shor’s algorithm, can factor large numbers exponentially 
faster than classical methods, threatening the security of widely used encryption protocols like RSA.

● Optimization: Quantum computers can accelerate solving complex optimization problems, crucial in 
industries like logistics, finance, and artificial intelligence, with algorithms such as quantum annealing or 
Grover’s algorithm for searching unsorted databases.

● Material Science and Chemistry: Quantum computers can simulate molecules and materials with high 
precision, offering insights that could lead to breakthroughs in drug discovery, energy production, and 
materials engineering.

As this technology evolves, quantum algorithms on graphs are emerging as a critical area of research, with 
potential applications in network theory, combinatorics, and beyond.



General Introduction to Quantum Computing

Classical computers (PCs, HPCs, laptops, etc.) are limited by locality and the classical fact that systems exist in 
only one state at a time.

Quantum systems differ:

● They can exist in a superposition of states and show interference effects.
● Entanglement allows spatially separated systems to be connected, enabling non-local effects.

Quantum computation merges two key scientific strands:

● Quantum mechanics (Planck, Einstein, Bohr, Schrödinger, Heisenberg, 1900–1925)
● Computer science (Turing, 1936)

The goal is to discover quantum algorithms that outperform classical algorithms.



Key Historical Milestones in Quantum Computation

● 1980s: Early Foundations: Yuri Manin, Richard Feynman, and Paul Benioff proposed the idea of 

quantum computation as a means to simulate physical systems.

● 1985: Universal Quantum Computer: David Deutsch defined the universal quantum Turing 

machine, the theoretical framework for quantum computation.

● 1994: Shor’s Algorithm: Peter Shor developed an efficient quantum algorithm for integer factorization, 

posing a threat to classical cryptography (e.g., RSA).

● 1996: Grover’s Algorithm: Lov Grover introduced an algorithm that provides a quadratic speed-up for 

searching unsorted databases, reducing the time from O(N) to O(√N) compared to classical search 

algorithms.

● 1984 Quantum Cryptography: The unbreakable quantum cryptography protocol was developed by 

Bennett and Brassard (BB84), ensuring secure communication even in a quantum era.

secure.



Mathematical Introduction to Quantum Computing

Operations on Qubits
Quantum Gates: Analogous to classical logic gates, 
quantum gates manipulate qubits. Here a quantum 
gate is an invertible linear transformation.

Examples include the Hadamard gate, Pauli-X gate, 
and CNOT gate. 

Measurement: Observing a qubit collapses its 
superposition to a definite state, either 0 or 1.

Formally, if we let                          , then the qubit 
collapses to       with probability        and       o/w.

What is a Qubit?

A qubit is the basic unit of quantum information, 
analogous to a bit in classical computing. Unlike a 
bit, which can be 0 or 1, a qubit can exist in a 
superposition of both states simultaneously.

Formally, a qubit is just a unit vector in     . 

We use the Dirac’s `bra-ket’ notation and write        
for a qubit. Throughout, we fix some orthonormal 
basis for      and denote its vectors by       and 





Mathematical Introduction to Quantum Computing

This means that if we have a qubit in an unknown state, we cannot clone it to obtain multiple copies for 
measurement.

* The No-Cloning Theorem is a fundamental principle that underlies many aspects of quantum information 
theory, including quantum computing, quantum cryptography, and the secure transmission of quantum 
states.

Wait! Can a single qubit store an infinite amount of information? What stops us from 
creating clones and measuring the qubit repeatedly to learn its amplitudes? 



Mathematical Introduction to Quantum Computing

1 qubit gates:  

1. Hadamard gate (H): Is defined by: H∣0⟩=1/√2  (∣0⟩+∣1⟩), H∣1⟩=1/√2  (∣0⟩−∣1⟩).
2. Pauli-X Gate (X): The quantum equivalent of the classical NOT gate, it flips the state 

of a qubit.
3. Pauli-Z Gate (Z): Applies a phase shift of π to the ∣1⟩ state, leaving ∣0⟩ unchanged. 

It’s a phase-flip gate.
4. Pauli-Y Gate (Y): Defined by Y=iXZ.

A 2 qubit gate:

CNOT Gate (Controlled-NOT): A two-qubit gate where the second qubit is flipped if the 
first qubit (control) is ∣1⟩. It’s essential for creating entanglement.



Mathematical Introduction to Quantum Computing
How is quantum computation useful? 

We highlight two advantages of the quantum setting over the classical setting even by using 
one qubit:

1. Memory Advantage: Bias Detection with One Qubit  Suppose we are given a coin that 
can be either unbiased or ε-biased. Using quantum computation, even with just one 
qubit, we can determine which one it is with greater efficiency than classical methods.

2. Impossibility Result: The Elitzur-Vaidman Bomb Tester A thought experiment 
introduced in 1993 by Israeli physicists Avshalom Elitzur and Lev Vaidman. This 
paradoxical quantum phenomenon demonstrates the concept of interaction-free 
measurement, allowing us to gain information about an object without directly interacting 
with it—something impossible in the classical setting.



Example: Epsilon-Biased Coin Decision

Quantum Approach

With Quantum, we can solve this problem by 
using a single qubit!

Classical Approach

To determine if a coin is ε-biased, one would flip 
the coin multiple times and analyze the results 
statistically. By Chernoff’s, one should flip the coin 
around         trials, and therefore, we need at least 
log(1/ε) bits for storage. 



Example: The 
Elitzur-Vaidman Bomb

The Classical Dilemma:

● You have a bomb, but you don’t know whether it 
is functional or a dud.

● Classically, the only way to check would involve 
triggering the detector, which would cause the 
bomb to explode if it’s functional.

The Quantum Solution:

● Using a quantum detector, it’s possible to 
design a procedure that can determine if the 
bomb is functional or a dud.

● This method allows us to detect a functional 
bomb with high probability, while keeping the 
chance of triggering an explosion very low.



Interactions of Qubits
When we have multiple qubits, their combined state lives 
in the tensor product space. 

For two qubits, their joint state is written as: 

In general, the combined state of n qubits lives in a        - 
dimensional space and can be written as:

States that cannot be written as tensor products (e.g., 
that cannot be written as                                                  ) 
are called entangled.

       



Interactions of Qubits – Entanglement
Entanglement is a unique quantum phenomenon where the states of two qubits become intertwined. Measuring 
the state of one qubit instantly influences the state of the other, regardless of the distance between them. 

This property is crucial for quantum computing, enabling complex computations and secure communication.

We now show how to entangle two qubits 

This process involves applying quantum gates as follows:

1. Take two qubits, each initialized to ∣0⟩. Their combined state is: ∣00⟩=∣0⟩⊗∣0⟩.
2. Apply a Hadamard Gate to the First Qubit. This transforms the combined state to

3. Finally, apply the CNOT gate to the 2nd qubit, to obtain the *Bell state

   *Also known as EPR-pairs, in honor of Einstein, Podolsky, and Rosen, who examined such states and their seemingly paradoxical properties.



An application using Entanglement 
● Scenario:

○ Alice and Bob want to convince an adversary, Charlie, that a cycle of length 2n+1 is 
2-colorable.

○ They can agree on a strategy beforehand, but cannot communicate after the game 
begins.

● The Rules:
○ In each step, Charlie gives Alice and Bob two vertices, a and b, which can be 

adjacent or the same.
○ Alice and Bob must assign either Red or Blue to their vertex.
○ If a=b, they must return the same color; if a≠b, they must return different colors.

● Classical Outcome:
○ Using classical methods, they can win with probability 1−1/(2n+1).

● Quantum Advantage (Entanglement):
○ By using quantum entanglement, they can increase their winning probability to          ,   

a significant improvement over the classical approach.



The Black Box Model
The Black Box Model (or Oracle Model) is a 
framework where we treat a function as a "black box" 
or an oracle.

The inner workings of the function are unknown to us, 
but we can query the oracle to get output for given 
inputs.

Classical Black Box: Given an input, the oracle 
returns an output by computing the function classically. 
Each query provides only one piece of information at a 
time.

Quantum Black Box (Oracle): Quantum computers 
allow querying the oracle on a superposition of 
inputs.This leads to more efficient algorithms, as 
quantum algorithms can extract more information with 
fewer queries.



The Black Box Model (cont’d)

The model 

● Given any function                              , define the unitary operator       by

● Now, a Quantum Query consists on an application of        on any given qubit.
● When m=1, it is sometimes more convenient to work with

* This can be achieved by applying       to the state                       and then 
measuring the second qubit with respect to the orthonormal basis  |+〉, |-〉.

● Can be applied in a superposition. For example, if we apply the operator on                                 
the state                        , we obtain      



Example: Grover's 
Algorithm
Grover's algorithm is a quantum search algorithm that 
provides a quadratic speedup over classical search 
algorithms. It can find an item in an unsorted database 
of N items in O(√N) time, demonstrating the 
computational efficiency of quantum algorithms.

Proposed by Lov Grover in 1996, this algorithm 
revolutionized quantum search, showing that quantum 
computers could achieve a significant speedup over 
classical search algorithms.

It was one of the earliest algorithms to demonstrate the 
power of quantum computation beyond the classical 
capabilities.



Grover’s Algorithm (cont’d)
Problem Definition 

Given a function                          , where f(x)=1 for a unique 
target element x=s and f(x)=0 for all other x.

Goal 

Find s  with high probability using quantum operations.

Oracle Query 

Use a quantum oracle       that marks the solution by 
flipping the phase of the target state:

The algorithm:

● Start by creating a uniform superposition            
of all                 possible inputs:  

● Amplitude Amplification: Apply Grover’s 
Diffusion Operator (inversion about the mean) to 
amplify the probability of measuring the correct 
solution:  

This operator increases the amplitude of the 
marked state.

● Repeat the oracle and diffusion steps for 
approximately           iterations to maximize the 
probability of observing the correct answer.

● Measure.



Research Focus: Quantum 
Algorithms on Graphs

My research explores the application of quantum 
algorithms to graph theory. This emerging field has the 
potential to solve complex problems in network 
analysis, optimization, and more. By leveraging 
quantum properties like superposition and 
entanglement, we can develop new algorithms that 
outperform classical counterparts.



Project 1: Learning a Hidden Graph

Formal Description

Motivating Problem Imagine a lab scenario with a collection of chemicals, where some pairs of chemicals 
react with one another.

You can mix any subset of chemicals in a test tube, and a reaction occurs if and only if at 
least one reacting pair is present.

Goal: Determine all reacting pairs using as few experiments as possible.

Represent the set of chemicals as vertices in a graph G=(V,E), where each reacting pair 
corresponds to an edge. 

Each experiment corresponds to selecting a subset S⊆V and querying whether there is at 
least one edge (a reaction) in the subgraph induced by S. 

This type of experiment is called an OR query, and our goal is to learn E using as few OR 
queries as possible. 



Project 1: Learning a Hidden Graph

Information theoretic lower bound: In each OR query we get 1 bit of information. Since there are                          
graphs G on n vertices with m edges, the number of OR queries required to learn such a G is of order 

Angluin and Chen (2008) gave a simple and optimal algorithm that uses                          queries.

A quantum version

Ambainis and Montanaro (2014) gave a lower bound of Ω(√m). 

In 2021 Montanaro and Shao  proved:

1. Slightly improved the classical bound to                               .
2. Under the assumptions that G has maximum degree d and is O(1) colorable, they significantly 

improved the classical bound and obtained                                    .

*In particular, for perfect matchings or Hamilton cycles, they obtained a bound of the form 

                                      

Classic algorithm



Project 1: Learning a Hidden Graph
Our results (F. and Liam Hardiman 2024+)

● Perfect matchings and Hamilton cycles*:

  

● Graphs with maximum degree d and m edges:   

*Up to logarithmic factors, our results match Ambainis and Montanaro's lower bound.



Project 2: Vertex Coloring of a Graph
Problem description

A proper k-coloring of G  is a coloring of V(G) with k colors such that no edge is monochromatic. 

The smallest positive k such that G admits a proper k-coloring is called the chromatic number of G, denoted by         .

While determining           is NP-hard (Karp 1972), it is easy to color a graph G with maximum degree D using D+1 
colors. 

A simple greedy algorithm achieves this by assigning each vertex a color different from those of its neighbors. Since 
each vertex has at most D neighbors, there is always at least one available color to ensure no edge becomes 
monochromatic. 

*Without making further assumptions about G, one cannot do with fewer than D+1 colors: consider a clique or an odd cycle.



Project 2: Vertex Coloring of a Graph
The Model 
Suppose we have access to an oracle that can answer the following types of queries:

● Adjacency queries: Given two vertices u and v, we can ask whether they are adjacent. 
● Neighborhood queries: For any vertex v and any integer j, we may query the j-th neighbor of v.

Here we judge an algorithm's efficiency by the number of queries it makes to such an oracle.

General Framework

Given two algorithms to vertex-color G with c colors: 

● Algorithm 1: Uses f(D) adjacency queries, where f is monotone decreasing.
● Algorithm 2: Makes g(D) neighborhood queries, where g is increasing. 

By applying the first algorithm when D≥D’ and the second when D≤D’ we obtain a worst-case query complexity of  
f(D’) = g(D’) (this is how we choose D’).



Project 2: Vertex Coloring of a Graph
Performance (classical) 

● Greedy makes O(|E|) neighborhood queries.  
● Assadi, Chen, and Khanna (2019) introduced the palette sparsification technique and produced a 

(D+1)-coloring with high probability in                          adjacency queries.

By combining their algorithm (as f) with greedy (as g), we achieve a (D+1)-coloring in                      queries*.

● Morris and Song (2021) gave a simple algorithm to (1+ε)D-color G in f(D)=                      queries in 
expectation.

*In the same paper they also showed that this is tight up to the log factor. 

Performance (quantum) 

Morris and Song: using Grover’s algorithm in every step of their algorithm, they obtain a (1+ε)D-coloring within 
f(D)=                             queries. Combining it with g(D)=Dn (greedy), they obtain a running time             .

They also gave a lower bound of           . 



Project 2: Vertex Coloring of a Graph

Our results (Chen, F., and Hardiman 2014+)

● Simple algorithm to (D+1)-color within                         adjacency 
queries in expectation.

● Quantum alg. to (D+1)-color within                             quantum 
adjacency queries. 

● Quantum alg. to (1+ε)D-color within                             quantum 
neighborhood queries.

By combining the bound in the last bullet (as g) with the bound in the second (as f), we obtain a running time                  . 



Project 2: Vertex Coloring of a Graph
Motivating example

Let G be a random graph on V=[n] (with edge probability p), and fix a partition of V into T intervals. With high 
probability, the degrees of all vertices are concentrated within an interval around np/T. One can then apply the 
Greedy algorithm to each interval, making neighborhood queries only within the ``correct’’ range for each interval. 
By using disjoint color palettes for each interval, this approach achieves a (1+o(1))D coloring within            queries.

For concentration of the degrees, we need T=np/log n so this gives a O(n log n) algorithm.  

More problems

● Improve the bound. 
● (D+1)-coloring?
● What if we assume G is triangle free? 
● Etc.



Project 1: Some Proof Ingredients
Combinatorial Group Testing (CGT)

● Goal: Efficiently identify a small number of "defective" items within a large set using the minimum 
number of tests.

● Applications: Medical testing, network security, fault detection in manufacturing, data compression.

Group Testing Concept: Instead of testing each item individually, test groups of items:

● If Positive Result: At least one defective item in the group. 
● If Negative Result: All items in the group are non-defective.

It is easy to come up with an algorithm to identify all k defective items within a set of size n within k log(n) OR 
queries. 

Belovs showed in 2014 that one can solve the CGT problem using a quantum algorithm within O(√k) quantum 
OR queries (and this is tight). 



Project 1: Some Proof Ingredients

We use this algorithm for CGT to develop a randomized algorithm for finding edges that

cross between independent sets. Our algorithm is inspired by that of Montanaro and Shao, itself 
inspired by Angluin and Chen’s classical algorithm.

Key Lemma (F. and Hardiman)

Let G be a graph on n vertices with maximum degree d. Suppose A and B are two 
disjoint, non-empty independent sets of vertices in G, and that there are m edges 
between A and B.

Then there is a quantum algorithm that identifies the m crossing edges in                           
queries.



Project 1: Some Proof Ingredients

Proof (Lemma)

For any subset T⊆ B, querying sets of the form SUT, where S ranges over the subsets of A, reduces the 
problem of learning N(T) to the CGT problem.

While Belovs’ allows us to learn N(T) in O(√|N(T)|) queries, we do not learn the individual adjacencies.

To this end: Take N = 60 d log n random subsets T of B, where each individual element b∈B appears in T 
with probability p=1/(3d) independently for all T.

By Chernoff and a union bound, whp each b∈B appears in C log n such sets T. 

Finally, we show that whp we have that for each a∈A and b∈B,  we have:

For all T, if b∈T then a∈N(T)                      ab is an edge. 

This completes the proof. ☐



Project 1: Some Proof Ingredients
Random Partitioning (say for matchings) 

Partition the graph into √n random sets. 

Pair them up, and learn the edges between each pair. 

Then, merge pairs, pair the merged sets, and REPEAT.

Why does it work?

In each step j, every set is a random and  of size               .

The expected number of edges between every pair is          , and it takes around        queries to learn it.

Since there are           pairs, and since there are at most             steps, the entire procedure takes at most

                                  Queries to learn the graph.

                                   



Conclusion and Future Directions
Quantum computing is a rapidly evolving field with 
immense potential. As scientists continue to develop 
new algorithms and technologies, the possibilities are 
endless. Future research will focus on practical 
implementations and expanding the applications of 
quantum computing. 

Some potential subareas of research: Quantum error 
correcting codes, non-local games (e.g., quantum 
chromatic number of a graph), and more. 

Thank you for your attention, and I welcome any questions or discussions.


