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Abstract	

	

Although	research	has	identified	dozens	of	behavioral	and	psychosocial	strategies	

for	boosting	resilience	in	adults,	little	is	known	about	the	common	underlying	

pathways.	A	comprehensive	review	of	these	strategies	using	an	affective	

neuroscience	approach	indicates	three	distinct	general	routes	to	resilience	(Fig.	1A):	

1)	down-regulating	the	negative	(e.g.,	exposure,	cognitive	reappraisal)	by	reducing	

distress-related	responses	of	the	amygdala,	hypothalamic-pituitary-adrenal	axis,	

and	autonomic	nervous	system;	2)	up-regulating	the	positive	(e.g.,	optimism,	social	

connectedness)	by	activating	mesostriatal	reward	pathways,	which	in	turn	can	

buffer	the	effects	of	stress;	and	3)	transcending	the	self	(e.g.,	mindfulness,	religious	

engagement)	by	reducing	activation	in	the	default	mode	network,	a	network	

associated	with	self-reflection,	mind-wandering,	and	rumination.	Some	strategies	

(e.g.,	social	support)	can	boost	resilience	via	more	than	one	pathway.	Under-	

or	over-stimulation	of	a	pathway	can	result	in	vulnerability,	such	as	over-

stimulation	of	the	reward	pathway	through	substance	abuse.	This	tripartite	model	

of	resilience-building	is	testable,	accounts	for	a	large	body	of	data	on	adult	

resilience,	and	makes	new	predictions	with	implications	for	practice.	

	

Keywords:	resilience;	well-being;	emotion	regulation;	affective	neuroscience;	

amygdala;	stress;	reward;	default	mode		

	 	



	

Page 3 of 123	

1.	Introduction	

	

	 Whether	surviving	a	natural	disaster,	loss	of	a	loved	one,	or	violence,	most	

people	experience	a	traumatic	event	at	some	point	in	their	lives.	In	addition	to	these	

types	of	acute	stressors,	many	people	also	often	experience	some	form	of	chronic	

stressor	such	as	marital	problems,	a	debilitating	disease,	low	socioeconomic	status,	

or	work-related	stress.	While	some	individuals	recover	from	or	continue	to	thrive	in	

the	face	of	such	stressors,	others	fall	into	the	grips	of	depression,	anxiety,	or	other	

chronic	disease,	and	many	report	poor	psychological	and	physical	well-being.	

Decades	of	research	have	identified	dozens	of	behavioral	and	psychosocial	

strategies	for	buffering	stress	and	boosting	resilience.	However,	to	date	little	is	

known	about	the	common	pathways	underlying	the	various	strategies.	This	

integrative	review	is	an	attempt	at	identifying	the	few	general	pathways	that	are	

shared	among	these	numerous	strategies.	Taking	an	affective	neuroscience	

approach,	here	I	propose	a	tripartite	model	of	resilience	building,	identifying	three	

distinct	major	pathways	to	building	resilience	in	adulthood.		

Resilience	has	been	defined	in	the	literature	in	many	different	ways	(Dunkel	

Schetter	&	Dolbier,	2011;	Kalisch	et	al.,	2017).	In	this	paper,	resilience	is	defined	

broadly	as	adapting	well	in	the	face	of	chronic	or	acute	adversity.	Consistent	with	

prior	reviews	(Southwick,	Vythilingam,	&	Charney,	2005;	Tabibnia	&	Radecki,	

2018),	in	the	review	that	follows,	I	include	the	following	outcome	measures	as	

indices	of	resilience:	mental	health	and	related	indices,	including	self-reported	affect	

and	quality	of	life;	physical	health	and	related	indices,	including	immune	assays	and	
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pain	management;	and	longevity	and	mortality,	particularly	following	trauma.		

I	begin	with	a	brief	overview	of	the	brain	networks	that	are	most	relevant	to	

resilience.	Then	I	present	the	tripartite	model	of	resilience-building	that	is	based	on	

this	current	knowledge	of	functional	neuroanatomy.	Next,	I	present	a	selective	

review	of	evidence	in	support	of	the	model.	Specifically,	I	review	affective	

neuroscience	studies	of	over	two-dozen	resilience-building	strategies	and	

demonstrate	how	each	strategy	A)	boosts	resilience	and	B)	recruits	at	least	one	of	

the	3	major	pathways	in	the	tripartite	model.	I	focus	on	behavioral	and	psychosocial,	

rather	than	pharmacological	or	genetic	or	environmental,	factors	that	affect	

resilience,	with	an	emphasis	on	studies	published	within	the	last	5-10	years.	Finally,	

I	discuss	practical	implications	and	suggestions	for	future	research.	

	

	

2.	Neurocircuitry	of	resilience	

	

	 It	has	generally	been	postulated	that	the	neural	correlates	of	resilience	

overlap	with	the	brain	circuitry	involved	in	fear	and	stress	(henceforth,	distress)	

and	their	regulation	(Charney,	2004;	Russo,	Murrough,	Han,	Charney,	&	Nestler,	

2012;	van	der	Werff,	van	den	Berg,	Pannekoek,	Elzinga,	&	van	der	Wee,	2013).	The	

mesolimbic	reward	circuit	has	also	gained	attention	as	an	important	network	in	

resilience	(Charney,	2004;	Dutcher	&	Creswell,	2018;	Krishnan	et	al.,	2007;	Russo	et	

al.,	2012).	More	recently,	a	pattern	is	emerging	in	the	literature	relating	an	

additional	neural	circuit,	namely	the	default	mode	network,	to	resilience	(Whitfield-
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Gabrieli	&	Ford,	2012).	In	this	section,	I	review	the	roles	of	the	following	networks	

in	resilience:	1)	distress	(fear	and	stress)	networks,	3)	reward	networks,	and	3)	

default	mode	network.	I	also	discuss	the	involvement	of	the	prefrontal	cortex	(PFC),	

particularly	lateral	prefrontal	cortex	(LPFC),	medial	prefrontal	cortex	(MPFC),	and	

anterior	cingulate	cortex	(ACC),	in	these	3	categories	of	networks.	While	other	brain	

regions,	such	as	anterior	insula	(Waugh,	Wager,	Fredrickson,	Noll,	&	Taylor,	2008)	

and	hippocampus	(A.	P.	King,	2018),	also	play	important	roles	in	resilience,	here	I	

demonstrate	that	a	simple	model	limited	to	these	3	categories	of	brain	networks	can	

account	for	a	vast	array	of	behavioral	and	psychosocial	strategies	of	resilience-

building	in	adult	humans.	

	

2.1.	Amygdala	fear	network	

	

	 The	central	role	of	the	amygdala	in	emotion,	particularly	fear	learning,	has	

been	well-established	and	reviewed	elsewhere	(Adolphs,	2013;	Davis,	1992;	

LeDoux,	2000).	Briefly,	because	of	its	afferent	connections	from	sensory	cortices	and	

efferent	connections	to	brainstem	and	hypothalamic	nuclei	that	can	mobilize	

autonomic	(e.g.,	fight-or-flight)	and	endocrine	(e.g.,	stress)	responses,	the	amygdala	

is	uniquely	positioned	to	learn	about	and	respond	to	salient	stimuli.	These	complex	

circuits,	along	with	microcircuits	within	the	amygdala	and	extended	amygdala,	help	

orchestrate	physiological	and	behavioral	responses	to	stimuli	that	are	pertinent	to	

self-preservation,	including	stimuli	that	predict	potential	threat,	thus	mediating	

states	of	fear	and	anxiety	(Janak	&	Tye,	2015;	Tovote,	Fadok,	&	Luthi,	2015),	but	also	
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rewarding	stimuli	such	as	food	and	social	partners	(Tovote,	Fadok,	&	Luthi,	2015).	

Based	on	animal	models	and	parallel	findings	in	human	neuroimaging	studies,	

hyper-responsiveness	of	the	amygdala,	along	with	dysfunction	in	MPFC	regions	that	

can	help	inhibit	it,	is	posited	to	underlie	many	anxiety	disorders,	including	specific	

phobias,	generalized	anxiety	disorder,	and	PTSD	(Andrewes	&	Jenkins,	2019;	Rauch,	

Shin,	&	Wright,	2003;	Shin	&	Liberzon,	2010).	Amygdala	abnormalities	are	central	to	

other	psychopathologies,	including	mood	disorders,	as	well	(Drevets,	2001;	Nestler	

et	al.,	2002).	In	particular,	hyperactivity	of	the	amygdala	to	threatening	stimuli	

(Etkin	&	Wager,	2007;	Rauch	et	al.,	2003;	Shin	&	Liberzon,	2010;	Siegle,	Thompson,	

Carter,	Steinhauer,	&	Thase,	2007)	and	at	rest	(Leaver	et	al.,	2018;	Shin	&	Liberzon,	

2010),	as	well	as	anatomical	abnormalities	in	the	amygdala	(Bora,	Fornito,	Pantelis,	

&	Yucel,	2012;	Hamilton,	Siemer,	&	Gotlib,	2008;	Hilbert,	Lueken,	&	Beesdo-Baum,	

2014),	have	been	reported	in	most	anxiety	disorders	and	depression.	There	are	also	

multiple	reports	of	amygdala	hyperactivation	during	explicit	emotion	regulation	in	

major	depressive	disorder	(Rive	et	al.,	2013;	Zilverstand,	Parvaz,	&	Goldstein,	2017).	

Conversely,	medications	that	reduce	amygdala	activity	help	alleviate	psychiatric	

symptoms	(Arnone	et	al.,	2012;	Labuschagne	et	al.,	2010;	Sheline	et	al.,	2001).	Given	

the	comorbidity	of	mood	and	anxiety	disorders	with	cardiovascular	disease,	it	is	

perhaps	not	surprising	that	amygdala	hyperactivity	has	also	been	implicated	in	

cardiovascular	disease	(Fiechter	et	al.,	2019;	Kraynak,	Marsland,	&	Gianaros,	2018).	

Taken	together,	these	findings	suggest	that	interventions	that	can	reduce	amygdala	

hyperactivity	can	help	boost	psychiatric	and	physical	health	resilience.	
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2.2.	Autonomic	and	neuroendocrine	stress	networks	

	

	 Stressful	experience	has	long	been	implicated	in	the	etiology	of	many	chronic	

physical	and	mental	health	conditions	(S.	Cohen,	Janicki-Deverts,	&	Miller,	2007).	In	

the	current	paper,	stress	is	defined	broadly	as	an	actual	or	anticipated	disruption	of	

homeostasis	or	well-being	(Ulrich-Lai	&	Herman,	2009).	Depending	on	the	type	of	

stressor,	the	brain	can	initiate	a	fast	autonomic	nervous	system	(ANS)	response,	

involving	the	sympathetic	and	parasympathetic	systems,	and/or	a	slow	endocrine	

response,	involving	the	hypothalamic	pituitary	adrenal	(HPA)	axis,	resulting	in	

elevation	of	circulating	glucocorticoids	like	cortisol	(Russell	&	Lightman,	2019;	

Ulrich-Lai	&	Herman,	2009).	The	fight-or-flight	autonomic	response	and	the	HPA	

endocrine	response	are	adaptive	in	the	short	term,	but	their	prolonged	activation	

leads	to	endocrine,	immune,	and	cardiovascular	dysregulation,	which	in	turn	can	

contribute	not	only	to	infectious	(e.g.,	viral)	and	inflammatory	(e.g.,	atherosclerosis)	

disease,	but	also	to	mental	illness	like	depression	(Dantzer,	Cohen,	Russo,	&	Dinan,	

2018;	Hunter,	Gray,	&	McEwen,	2018;	Russell	&	Lightman,	2019).	Prolonged	

elevation	of	glucocorticoids	also	impairs	brain	structure	and	function	that	can	affect	

mental	health.	Specifically,	chronic	elevation	of	stress	or	stress	hormones	can	cause	

abnormal	cell	growth	in	the	amygdala,	as	well	as	neural	damage	in	the	hippocampus	

and	prefrontal	cortex,	compromising	cognitive	and	affective	function,	including	

emotion	regulation,	and	increasing	vulnerability	to	psychopathology,	including	

substance	abuse,	depression,	and	anxiety	(Arnsten,	2009;	Cathomas,	Murrough,	

Nestler,	Han,	&	Russo,	2019;	Lupien,	McEwen,	Gunnar,	&	Heim,	2009;	Russell	&	
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Lightman,	2019).	Increased	HPA	activity,	including	elevated	levels	of	cortisol,	has	

long	been	linked	with	depression	(Ali	&	Nemeroff,	2020;	Pariante	&	Lightman,	2008;	

Russell	&	Lightman,	2019;	Stetler	&	Miller,	2011),	although	more	recent	meta-

analyses	and	models	associate	elevated	HPA	activity	with	only	subgroups	of	patients	

(Gold,	2015;	Lombardo	et	al.,	2019;	Menke,	2019),	such	as	with	melancholic	but	not	

atypical	depression	(Gold,	2015).	Successful	treatment	of	depression	tends	to	

normalize	the	HPA	axis	disruptions	(reviewed	in	Ali	&	Nemeroff,	2020),	and,	

importantly,	reduction	of	stress	or	cortisol	can	reverse	the	neural	and	psychological	

impairments	caused	by	elevated	HPA	activity	(Lupien	et	al.,	2009;	McEwen	&	

Gianaros,	2011).	Thus,	interventions	that	can	reduce	stress	and	excess	sympathetic	

and	HPA	activity	are	considered	particularly	effective	at	boosting	resilience.		

	

2.3.	Mesostriatal	reward	networks	

	

The	canonical	reward	network	in	the	brain,	known	as	the	mesolimbic	reward	

pathway,	is	that	of	the	midbrain	dopamine	neurons	in	the	ventral	tegmental	area	

(VTA)	projecting	onto	the	nucleus	accumbens	in	the	ventral	striatum	and	other	

forebrain	areas;	another	related	pathway	is	the	mesocortical	pathway	connecting	

the	VTA	dopamine	neurons	to	ventromedial	PFC	and	other	MPFC	regions	(Bjorklund	

&	Dunnett,	2007).	A	third	and	final	dopaminergic	pathway	originating	in	the	

midbrain	is	the	nigrostriatal	pathway,	which,	although	primarily	associated	with	

motor	function,	has	also	been	implicated	in	reward	processing	(Schultz,	Dayan,	&	

Montague,	1997).	I	refer	to	the	mesolimbic,	mesocortical,	and	nigrostriatal	reward	
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pathways	collectively	as	the	“mesostriatal”	reward	pathway.	The	midbrain	

dopamine	neurons	in	the	mesostriatal	pathway	respond	to	reward	such	as	food	and	

even	to	anticipation	of	reward,	and	they	are	inhibited	by	aversive	stimuli	and	by	

omission	of	anticipated	reward	(Schultz,	2007).	Although	there	is	no	single	

unidirectional	association	between	reward	and	resilience	across	the	board	(Russo	et	

al.,	2012),	a	growing	literature	links	activation	of	mesostriatal	reward	networks	

with	better	physical	and	mental	health,	implicating	reward	networks	as	a	relatively	

novel	target	for	boosting	resilience	(Dutcher	&	Creswell,	2018).	Briefly,	decreased	

activity	in	mesostriatal	networks	has	been	associated	with	anhedonia,	major	

depression,	and	PTSD	(Feder,	Nestler,	&	Charney,	2009;	Husain	&	Roiser,	2018).	For	

example,	reduced	capacity	to	sustain	positive	emotion	in	major	depression	has	been	

associated	with	diminished	maintenance	of	mesostriatal	activation	in	response	to	

positive	images	(Heller	et	al.,	2009).	Conversely,	in	resilient	individuals	mesolimbic	

dopamine	pathways	might	be	more	responsive	to	reward	in	the	face	of	trauma	

(Charney,	2004).	For	example,	special-forces	soldiers	show	greater	reactivity	to	

positive	events	in	reward-processing	regions	than	healthy	civilian	controls	

(Vythilingam	et	al.,	2009).	Indeed,	the	mesostriatal	reward	network	can	directly	

buffer	the	effects	of	stress,	as	stimulation	of	the	reward	network	can	downregulate	

amygdala/HPA	activity	(reviewed	in	Dutcher	&	Creswell,	2018).	Thus,	reward-

related	striatal	activity	may	buffer	against	the	effect	of	stress	on	depressive	or	

PTSD-related	symptoms	(Admon	et	al.,	2013;	Avinun	et	al.,	2017;	Corral-Frias	et	al.,	

2015;	Nikolova,	Bogdan,	Brigidi,	&	Hariri,	2012;	Tashjian	&	Galvan,	2018).	Similarly,	

reward-related	traits,	such	as	sensitivity	to	reward,	predict	stress	resilience,	and	the	
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relation	between	reward	sensitivity	and	resilience	is	mediated	by	positive	affect	

during	or	after	stress	(Corral-Frias,	Nadel,	Fellous,	&	Jacobs,	2016).	Importantly,	

experimentally	increasing	mesolimbic	dopamine	neuron	activity	in	vulnerable	mice	

can	boost	immunity	(Ben-Shaanan	et	al.,	2018)	and	have	an	anti-depressant	effect	

(Friedman	et	al.,	2014).	Similarly,	deep	brain	stimulation	of	the	ventral	striatum	in	

patients	with	treatment-resistant	or	refractory	depression	has	an	anti-depressant	

effect	(Bewernick	et	al.,	2010;	Dougherty	et	al.,	2015;	Schlaepfer	et	al.,	2008).	

Together	these	findings	highlight	the	importance	of	positive	affect	and	the	reward	

pathway	in	stress	resilience	and	suggest	that	one	way	to	boost	resilience	is	to	

employ	strategies	that	boost	positive	affect	and	reward	pathway	activity.	

	

2.4.	Default	mode	network	(DMN)	

	

	 DMN	dysfunction	has	emerged	as	a	new	area	of	interest	in	mental	health	

research.	The	DMN	is	commonly	described	as	a	distributed	network	of	regions,	

including	MPFC	and	posterior	cingulate	cortex	(PCC),	that	tend	to	be	co-activated	

when	a	person	is	not	engaged	in	tasks	that	demand	external	attention	(Buckner	&	

DiNicola,	2019;	Raichle	et	al.,	2001).	These	regions	in	the	DMN	also	get	activated	

during	tasks	of	self-referential	thinking,	prospection,	and	social	cognition,	

suggesting	that	when	the	mind	is	not	otherwise	engaged,	its	default	is	to	wander,	to	

think	about	one’s	past,	plan	for	one’s	future,	and	think	about	others	(Buckner	&	

DiNicola,	2019;	Christoff,	Irving,	Fox,	Spreng,	&	Andrews-Hanna,	2016).	The	DMN	

may	in	fact	be	comprised	of	multiple	different	but	interwoven	networks,	but	they	
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share	the	general	role	of	supporting	internally-oriented	(i.e.,	stimulus-independent)	

thought	(Buckner	&	DiNicola,	2019).	While	mind-wandering	and	other	self-focused	

thought	is	commonly	associated	with	the	DMN,	this	brain	network	may	also	play	a	

more	fundamental	function,	such	as	a	commanding	role	in	the	large-scale	functional	

organization	of	the	brain’s	ongoing	intrinsic	activity	(Raichle,	2015).	According	to	

one	model,	hyperactivity	in	a	default	network	called	DNCORE,	which	includes	MPFC	

and	PCC,	leads	to	increased	automatic	constraints	in	thought,	particularly	when	

functional	connectivity	between	these	networks	is	high,	resulting	in	ruminative	and	

obsessive	thinking	that	characterize	mood	and	anxiety	disorders	(Christoff	et	al.,	

2016).	Indeed,	hyperactivity	in	the	DMN	has	been	associated	with	psychiatric	

illness,	including	depression	and	schizophrenia	(reviewed	in	Andrews-Hanna,	

Smallwood,	&	Spreng,	2014;	Anticevic	et	al.,	2012;	Broyd	et	al.,	2009;	Whitfield-

Gabrieli	&	Ford,	2012),	as	well	as	addiction	(DeWitt,	Ketcherside,	McQueeny,	

Dunlop,	&	Filbey,	2015).	For	example,	increased	dominance	of	DMN	over	the	

executive	network	in	major	depressive	disorder	has	been	linked	to	maladaptive	

rumination	(Hamilton	et	al.,	2011).	Furthermore,	increased	mind	wandering	

(Killingsworth	&	Gilbert,	2010)	and	MPFC-related	self-referential	thinking	(Brewer	

et	al.,	2011)	are	associated	with	unhappiness,	while	decreased	activity	in	DMN	is	

associated	with	happiness	(Luo,	Kong,	Qi,	You,	&	Huang,	2016).	Although	the	exact	

nature	of	DMN	dysfunction	in	psychiatric	disease	is	still	not	clear	and	varies	across	

diseases	and	even	across	studies	of	the	same	disease,	meta-analyses	of	depression	

report	increased	connectivity	within	DMN	(Kaiser,	Andrews-Hanna,	Wager,	&	

Pizzagalli,	2015),	and	within	MPFC	specifically	(Iwabuchi	et	al.,	2015;	Mulders,	van	
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Eijndhoven,	Schene,	Beckmann,	&	Tendolkar,	2015),	which	in	turn	seems	associated	

with	rumination	(Hamilton,	Farmer,	Fogelman,	&	Gotlib,	2015;	Zhu	et	al.,	2012).	

Importantly,	transcranial	stimulation	(Liston	et	al.,	2014;	Philip	et	al.,	2018)	and	

pharmaceutical	(Dutta,	McKie,	&	Deakin,	2014;	Posner	et	al.,	2013)	interventions	

that	successfully	treat	depression	and	PTSD	tend	to	normalize	DMN	functional	

pathology.	Together	these	results	support	the	emerging	idea	that	experiences	that	

can	lower	excessive	DMN	activity,	and	promote	disengagement	from	the	default	

self-focused	mind-wandering,	may	help	boost	resilience	(Brewer	et	al.,	2011;	Wu,	

Wang,	He,	Mao,	&	Zhang,	2010).	

	

2.5.	Role	of	the	PFC	in	these	networks	

	

The	PFC	is	a	large	and	heterogeneous	region	intricately	involved	in	all	the	

networks	discussed	so	far.	Here	I	focus	on	MPFC	and	LPFC.	MPFC	in	this	literature	

typically	refers	to	the	ventromedial	wall	of	the	PFC	(hence	also	called	ventromedial	

PFC	or	VMPFC),	including	Brodmann	Areas	25	and	12,	medial	10	and	11,	and	ventral	

24	and	32	(Delgado	et	al.,	2016;	Roy,	Shohamy,	&	Wager,	2012).	A	partially	

overlapping	region	is	the	anterior	cingulate	cortex	(ACC),	including	rostral	anterior	

cingulate	(rACC;	ventral	24	and	32),	associated	with	induced	emotion	and	emotion	

regulation,	and	dorsal	anterior	cingulate	(dACC;	dorsal	24	and	32),	involved	in	

physical	and	social	distress	(Eisenberger,	2015;	Etkin,	Egner,	&	Kalisch,	2011).	In	

LPFC,	I	mainly	focus	on	the	association	of	self-regulation	with	ventrolateral	PFC	

(VLPFC),	including	BA	44,	45,	47,	lateral	11	and	ventrolateral	10.	Less	discussed	is	
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dorsolateral	prefrontal	cortex	(DLPFC),	which	is	part	of	the	executive	network	and	

is	involved	in	such	higher	cognitive	processes	as	working	memory	and	attention	(E.	

K.	Miller	&	Cohen,	2001).	MPFC	and	LPFC	are	reciprocally	connected	to	and	can	

exert	top-down	control	over	multiple	downstream	networks	in	the	brain,	thus	

helping	to	orchestrate	and	execute	goal-directed	action	(E.	K.	Miller	&	Cohen,	2001),	

including	many	of	the	resilience-building	strategies	reviewed	here.	Hence,	strategies	

that	facilitate	function	in	these	prefrontal	regions	tend	to	help	boost	resilience.		

	

2.5.1.	Medial	prefrontal	cortex.	(MPFC)	

	 According	to	recent	reviews,	three	functions	most	commonly	associated	with	

MPFC	are	1)	interpreting	affective	information	and	modulating	emotional	response	

(affect	regulation),	2)	encoding	reward	and	subjective	value	(reward	network),	and	

3)	thinking	about	oneself	and	others	(default	mode	network)	(Acikalin,	Gorgolewski,	

&	Poldrack,	2017;	Delgado	et	al.,	2016).	The	MPFC	is	well	suited	to	regulate	negative	

and	positive	affect	and	support	self-reflective	thinking,	as	this	region	connects	

systems	involved	in	processing	affective	sensory	cues,	self	and	social	cognition,	and	

episodic	memory	with	centers	that	regulate	autonomic	and	endocrine	responses	

such	as	the	amygdala	and	hypothalamus	(Roy	et	al.,	2012).	In	this	section,	I	focus	

primarily	on	the	role	of	MPFC	in	regulating	distress.	As	the	MPFC	sends	robust	

projections	to	amygdala	neurons	that	can	inhibit	the	fear	response	(Milad,	Rauch,	

Pitman,	&	Quirk,	2006),	this	region	is	involved	in,	and	in	fact	necessary	for,	fear	

extinction	memory	in	rodents	(Do-Monte,	Manzano-Nieves,	Quinones-Laracuente,	

Ramos-Medina,	&	Quirk,	2015)	and	seems	to	play	a	similar	role	in	human	fear	
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extinction	(Gottfried	&	Dolan,	2004;	Milad	et	al.,	2005;	Phelps,	Delgado,	Nearing,	&	

LeDoux,	2004).	The	MPFC	can	also	regulate	the	HPA	axis	and	stress	responses	

(Eisenberger	&	Cole,	2012)	via	direct	projections	to	the	hypothalamus	(Diorio,	Viau,	

&	Meaney,	1993;	Radley,	Arias,	&	Sawchenko,	2006).	MPFC	has	been	implicated	in	

both	down-	and	up-regulation	of	affect	(Pezawas	et	al.,	2005),	including	up-

regulation	of	positive	affect	(S.	H.	Kim	&	Hamann,	2007).	In	studies	of	stress-related	

psychopathology,	trauma-exposed	healthy	participants	(resilient	group)	compared	

to	trauma-exposed	patients	with	PTSD	show	greater	activation	in	MPFC	during	

voluntary	regulation	of	negative	affect	(New	et	al.,	2009)	and	increased	effective	

connectivity	from	MPFC	to	amygdala	(F.	Chen	et	al.,	2018).	Conversely,	hypo-

connectivity	between	MPFC	and	amygdala	is	associated	with	depression	(Kaiser	et	

al.,	2015)	and	anxiety	(Xu	et	al.,	2019).	Similarly,	integrity	of	white	fiber	tracks	that	

connect	MPFC	and	amygdala	moderates	an	association	between	self-reported	use	of	

cognitive	emotion	regulation	and	the	experience	of	anxiety	and	depressive	

symptoms	(d'Arbeloff	et	al.,	2018).	

	 	

2.5.2.	Lateral	prefrontal	cortex.	(LPFC)	

	 While	MPFC	is	an	evolutionarily	conserved	PFC	region	involved	in	emotion	

regulation,	enabling	passive	regulation	of	distress	such	as	extinction	learning	across	

species,	humans	also	possess	evolutionarily	newer	cortical	regions,	particularly	

LPFC,	a	key	component	of	the	central	executive	network,	enabling	higher-order	

cognitive	abilities,	including	such	self-regulation	strategies	as	cognitive	reappraisal	

and	affect	labeling	(discussed	in	detail	in	Section	4	below).	According	to	meta-
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analyses,	cognitive	regulation	such	as	reappraisal	consistently	activates	LPFC	(Buhle	

et	al.,	2014;	Frank	et	al.,	2014;	Klumpp,	Bhaumik,	Kinney,	&	Fitzgerald,	2018;	

Morawetz,	Bode,	Derntl,	&	Heekeren,	2017),	as	it	reduces	activation	in	amygdala	

(Buhle	et	al.,	2014;	Frank	et	al.,	2014;	Klumpp	et	al.,	2018),	a	pattern	of	neural	

activity	associated	with	successful	regulation	(Klumpp	et	al.,	2018).	This	

relationship	of	increased	LPFC	activation	with	decreased	amygdala	activation	is	

sometimes	mediated	by	increased	activation	in	MPFC	(Johnstone,	van	Reekum,	Urry,	

Kalin,	&	Davidson,	2007;	Lieberman	et	al.,	2007),	prompting	theories	that	LPFC	may	

enable	emotion-regulation	by	recruiting	MPFC,	which	can	then	directly	regulate	the	

amygdala	(Diekhof,	Geier,	Falkai,	&	Gruber,	2011;	Kohn	et	al.,	2014;	Schiller	&	

Delgado,	2010).	The	LPFC,	particularly	VLPFC,	has	been	implicated	in	self-regulation	

across	multiple	different	domains	(Aron,	Robbins,	&	Poldrack,	2014;	J.	R.	Cohen	&	

Lieberman,	2009),	including	regulation	of	motor	impulses,	negative	affect,	and	

craving	in	an	overlapping	region	(Tabibnia	et	al.,	2014;	Tabibnia	et	al.,	2011).	Given	

its	role	in	cognitive	control	and	self-regulation,	VLPFC	deficits	in	structural	integrity	

or	function	during	self-regulation	have	been	associated	with	various	pathologies	of	

self-regulation,	including	mood	and	anxiety	disorders	(Pico-Perez,	Radua,	Steward,	

Menchon,	&	Soriano-Mas,	2017;	Zilverstand	et	al.,	2017),	as	well	as	addiction	(Aron	

et	al.,	2014;	Feil	et	al.,	2010;	R.	Z.	Goldstein	&	Volkow,	2011).		

	

	

3.	A	tripartite	model	of	building	resilience	
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To	date,	no	single	model	of	resilience-building	can	account	for	the	dozens	of	

commonly	known	seemingly	diverse	behavioral	and	psychosocial	strategies	of	

resilience-building	in	adulthood.	Historically,	psychological	models	have	focused	on	

negative	aspects	of	human	experience	and	functioning,	including	negative	affect,	as	

the	root	of	psychopathology	(Vazquez,	2017),	along	with	a	focus	on	reducing	the	

negative	rather	than	promoting	the	positive	(Carl,	Soskin,	Kerns,	&	Barlow,	2013;	

Seligman,	2019).	Not	until	recently	has	the	field	made	a	strong	push	towards	also	

investigating	the	role	of	positive	experience	and	functioning	in	well-being	and	

resilience	(Carl	et	al.,	2013;	Diener,	2000;	Fredrickson,	2004;	Seligman,	2019;	

Vazquez,	2017),	generally	recognizing	that	positive	and	negative	affect	are	at	least	

partly	orthogonal	constructs	(B.	D.	Dunn,	2017;	Ryff	et	al.,	2006).	This	push	in	

psychology	has	paralleled	the	burgeoning	of	neural	models	of	resilience,	which	

typically	include	not	only	the	amygdala	and	HPA	distress	networks	but	also	the	

mesostriatal	reward	network	as	important	components	in	the	pathway	to	resilience	

(Dutcher	&	Creswell,	2018;	Feder	et	al.,	2009;	Franklin,	Saab,	&	Mansuy,	2012;	

Kalisch,	Muller,	&	Tuscher,	2015;	Russo	et	al.,	2012;	Southwick	&	Charney,	2012;	

van	der	Werff	et	al.,	2013).	For	example,	clinical	depression	is	marked	by	an	

abundance	of	negative	affect	and	associated	abnormalities	in	the	amygdala	fear	

circuitry,	as	well	as	by	a	paucity	of	positive	affect	and	associated	deficits	in	the	

brain’s	dopaminergic	reward	circuitry	(Charney,	2004).	Thus,	a	comprehensive	

approach	to	building	resilience	should	tackle	both	distress-reducing	and	positivity-

boosting	pathways.	While	the	distress	and	reward	networks	both	play	critical	roles	

in	resilience,	in	light	of	recent	findings	reviewed	above,	I	suggest	that	DMN	also	be	
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included	as	a	key	network	in	resilience-building.	I	demonstrate	here	that	a	single	

model	including	these	three	pathways	(distress	networks,	reward	networks,	and	

default	network)	can	not	only	account	for	the	more	than	two-dozen	psychosocial	

strategies	commonly	known	to	boost	resilience,	but	it	can	also	make	predictions	

about	potential	novel	strategies.			

	

3.1.	Description	of	the	Tripartite	Model	

	

According	to	the	tripartite	model	of	resilience-building	(Fig.	1A),	the	three	

distinct	general	routes	to	resilience	are	1)	down-regulating	the	negative,	2)	up-

regulating	the	positive,	and	3)	transcending	the	self.	First	are	strategies	that	directly	

target	and	down-regulate	negative	affective	states	(e.g.,	exposure	and	cognitive	

reappraisal)	by	reducing	distress-related	responses	of	the	amygdala	and	HPA	axis.	

The	second	route	to	resilience	encompasses	strategies	that	up-regulate	positive	

affective	states	(e.g.,	optimism	and	social	connectedness)	by	activating	mesostriatal	

reward	networks,	which	in	turn	can	buffer	the	effects	of	stress.	The	emerging	third	

route	to	resilience	encompasses	strategies	that	promote	an	experience	of	self-

transcendence	(e.g.,	mindfulness,	religious	engagement)	and	reduce	activation	in	

the	DMN.		

	 Top-down	voluntary	or	implicit	control	over	each	of	these	three	pathways	

can	be	exerted	via	LPFC	and	MPFC	regions	that	support	attention,	self-regulation,	

and	other	executive	function	(Fig.	1B).	Thus,	strategies	that	recruit	or	improve	PFC	

executive	function	can	also	impact	resilience.	These	strategies	are	outside	the	scope	
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of	the	current	review,	but	an	example	is	psychological	flexibility	(Kashdan	&	

Rottenberg,	2010).	Also	known	as	coping	flexibility	(Cheng,	Lau,	&	Chan,	2014)	or	

regulatory	flexibility	(Koch,	Mars,	Toni,	&	Roelofs,	2018),	and	related	to	cognitive	

flexibility	(Dajani	&	Uddin,	2015),	psychological	flexibility	is	the	ability	to	recognize	

which	strategy	to	use	or	not	use	and	the	flexibility	to	select	and	implement,	and	

even	switch	to,	a	strategy	that	fits	changing	situational	demands.	Another	example	

of	top-down	resilience	building	approach	is	“brain	training”	or	cognitive	training,	

programs	designed	to	directly	boost	PFC	function,	reviewed	elsewhere	(e.g.,	Simons	

et	al.,	2016).	Importantly,	as	can	be	seen	in	Fig.	1B,	according	to	the	tripartite	model,	

even	strategies	that	target	PFC	executive	function	are	hypothesized	to	have	their	

impact	on	resilience	via	one	of	the	3	proximal	pathways	to	resilience.	

	 	

3.2.	Nuances	of	the	Tripartite	Model	

	

	 Although	the	three	pathways	of	the	tripartite	model	are	distinct,	they	are	not	

mutually	exclusive,	they	overlap,	and	they	can	influence	one	another.	Some	

strategies	can	boost	resilience	via	more	than	one	pathway.	For	example,	while	social	

connectedness	boosts	positive	affect	and	involves	neural	pathways	associated	with	

reward,	it	also	reduces	negative	states	such	as	loneliness	and	activation	in	distress	

networks.	In	fact,	as	I	review	in	Section	5	below,	positive	affect	bolsters	resilience	in	

part	because	it	helps	build	resources	for	coping	with	future	adversity	(Fredrickson,	

2013).	The	pathways	overlap	at	the	neural	level	as	well.	While	the	MPFC	plays	a	role	

in	all	3	network,	the	amygdala	too	is	not	only	an	important	component	of	the	
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distress	network,	but	it	has	also	been	implicated	in	the	reward	network	(Baxter	&	

Murray,	2002;	Cardinal,	Parkinson,	Hall,	&	Everitt,	2002;	Janak	&	Tye,	2015)	and	has	

been	considered	part	of	the	DMN	by	some	(Sheline	et	al.,	2009).	Importantly,	each	

region	within	a	network	is	anatomically	connected	to	multiple	other	regions	within	

and	outside	the	network,	allowing	networks	to	influence	one	another.	For	example,	

activating	the	reward	network	can	reduce	activity	in	the	distress	networks	(Dutcher	

&	Creswell,	2018).		

It	is	important	to	note	that	the	tripartite	model	promotes	practices	that	

reduce	over-activation	in	distress	networks	or	DMN	or	increase	under-activation	in	

reward	networks.	The	model	does	not	propose	that	activation	in	distress	networks	

or	DMN	be	eliminated	entirely,	as	these	networks	evolved	to	serve	adaptive	

functions	and	in	fact	their	activation	may	boost	resilience	in	some	cases.	For	

example,	activating	the	fear	network	during	exposure	has	been	associated	with	

successful	extinction	(Barad,	Gean,	&	Lutz,	2006;	Foa	&	Kozak,	1986),	and	DMN-

related	self-reflection	can	lead	to	positive	outcomes	like	enhanced	meaning	in	life	

(Waytz,	Hershfield,	&	Tamir,	2015).	Nor	does	the	model	propose	that	the	more	

activation	in	the	reward	network	the	better,	as	countless	addiction	studies	have	

demonstrated	the	devastating	consequences	of	intense	stimulation	of	the	dopamine	

reward	pathway	(Di	Chiara	&	Bassareo,	2007;	Volkow	&	Morales,	2015).	More	likely,	

optimal	functioning	is	associated	with	proper	balance	within	(e.g.,	Grant	&	Schwartz,	

2011)	and	between	(e.g.,	Raichle,	2015)	systems,	including	timely	activation	and	

recovery,	such	as	in	other	networks	in	the	brain	(e.g.,	Arnsten,	2009)	and	body	more	

generally	(i.e.,	homeostasis)	(McEwen	&	Gianaros,	2011).	As	reviewed	in	Section	2	
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above,	imbalances	typically	associated	with	psychopathology	and	poor	resilience	

tend	to	go	in	the	direction	of	hyperactivity	in	distress	networks	and	DMN	and	

hypoactivity	activity	in	reward	networks.	Hence,	the	tripartite	model	is	a	theory	of	

how	to	counteract	these	imbalances	that	are	typically	associated	with	low	resilience.		

To	support	the	tripartite	model,	in	the	sections	that	follow,	I	systematically	

review	over	two-dozen	behavioral	and	psychosocial	strategies	that	boost	resilience	

and	activate	at	least	one	of	the	3	pathways	in	the	tripartite	model.	This	review	is	

summarized	in	Table	1	and	depicted	in	Fig.	1A.		

	

	

4.	Down-Regulating	the	Negative	

	

	 Several	different	strategies	can	be	used	to	counteract	or	directly	cope	with	a	

threat	or	stressor.	Coping	refers	to	the	behavioral	and	cognitive	responses	made	in	

order	to	manage	perceived	threat.	In	general,	behavioral	coping	strategies,	such	as	

those	that	involve	some	form	of	physical	engagement	with	the	environment	(e.g.,	

fight	or	flight),	tend	to	be	adaptive	when	the	stressor	is	controllable	or	changeable,	

while	cognitive	coping	strategies,	such	as	reappraisal,	tend	to	be	adaptive	when	the	

stressor	is	not	controllable.	

	

4.1.	Behavioral	coping	and	taking	control		

	

	 Behavioral	coping	is	protective	against	distress	and	psychopathology	
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(Hobfoll	et	al.,	2007;	Moos	&	Schaefer,	1993).	The	benefits	and	limitations	of	

behavioral	coping	have	been	extensively	discussed	under	various	headings,	

including	“situation	selection”	and	“situation	modification”	(Gross,	2015),	“proactive	

coping”	(Koolhaas	et	al.,	1999),	“problem-focused	coping”	(Lazarus	&	Folkman,	

1984),	and	“primary	control”	(Heckhausen,	Wrosch,	&	Schulz,	2010;	Rothbaum,	

Weisz,	&	Snyder,	1982).	Here	I	use	the	broad	term	of	behavioral	strategies	to	refer	

to	exposure	and	reconsolidation,	active	coping	strategies	like	active	avoidance	and	

controlling	the	stressor,	and	the	proactive	strategy	of	stress	inoculation.		

	 	

4.1.1.	Exposure	and	reconsolidation.		

	 To	the	extent	that	a	fear	is	irrational,	the	classic	method	of	overcoming	the	

fear	is	through	repeated	exposure	in	a	safe	environment	until	the	fear	is	

extinguished,	a	technique	that	has	been	extensively	researched	in	animals	and	

humans	for	decades	(Asnaani,	McLean,	&	Foa,	2016).	Exposure	therapy	is	well-

established,	effective,	and	an	important	aspect	of	most	interventions	for	anxiety	

disorders	(reviewed	in	Craske,	Treanor,	Conway,	Zbozinek,	&	Vervliet,	2014;	Foa	&	

McLean,	2016).	Animal	models	indicate	that	extinction	training	does	not	erase	the	

original	fear	memory	but	rather	leads	to	formation	of	a	new	amygdala-based	

memory,	associating	the	formerly	feared	stimulus	with	safety	(reviewed	in	Furini,	

Myskiw,	&	Izquierdo,	2014).	This	new	memory	is	consolidated	and	stored	in	MPFC,	

and	it	can	inhibit	the	expression	of	the	original	fear	response	(reviewed	in	Milad	&	

Quirk,	2012;	Sotres-Bayon,	Cain,	&	LeDoux,	2006;	also	see	Section	2.5.1.	above).	

Human	neuroimaging	(reviewed	in	Fullana	et	al.,	2018)	and	transcranial	stimulation	
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studies	(Herrmann	et	al.,	2017;	Raij	et	al.,	2017)	also	implicate	a	critical	role	of	

MPFC,	as	well	as	LPFC,	during	extinction	learning,	along	with	reduction	in	amygdala	

fear-network	reactivity	following	extinction	(reviewed	in	Hartley	&	Phelps,	2010;	

Sehlmeyer	et	al.,	2009)	and	exposure	therapy	(Goossens,	Sunaert,	Peeters,	Griez,	&	

Schruers,	2007;	Hauner,	Mineka,	Voss,	&	Paller,	2012).	However,	because	the	

original	fear	memory	is	still	present,	the	fear	can	return	after	successful	extinction	

(e.g.,	spontaneously	or	in	contexts	that	differ	from	the	extinction	context).	

	 An	emerging	alternative	intervention	that	can	potentially	weaken	the	fear	

memory	itself,	and	hence	reduce	fear	recovery,	is	reconsolidation	interference.	

When	a	memory	is	recalled,	it	is	rendered	labile	and	can	therefore	be	altered,	or	

reconsolidated.	Thus,	fear	memories	can	be	altered	if	extinction	training	occurs	

following	the	mere	act	of	retrieving	the	memory,	when	the	memory	has	been	

rendered	labile.	Multiple	animal	and	human	studies	have	shown	lasting	benefits	of	

memory	reactivation	prior	to	extinction	training	(reviewed	in	Baldi	&	Bucherelli,	

2015;	Beckers	&	Kindt,	2017;	Kredlow,	Unger,	&	Otto,	2016),	resulting	in	less	fear	

recovery,	lower	amygdala	activation,	and	weakened	fear	circuit	connectivity	in	the	

amygdala	(e.g.,	Agren	et	al.,	2012;	Bjorkstrand	et	al.,	2017;	Schiller,	Kanen,	LeDoux,	

Monfils,	&	Phelps,	2013),	although	these	results	have	not	been	consistently	

replicated,	possibly	due	to	“boundary	conditions”	that	remain	to	be	examined	

(Treanor,	Brown,	Rissman,	&	Craske,	2017).	For	a	full	discussion	of	the	strengths	

and	limitations	of	reconsolidation	interference,	see	Beckers	and	Kindt	(2017).				

	

4.1.2.	Active	coping.		
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	 While	exposure	is	relatively	passive,	also	effective	are	more	active	forms	of	

coping	–	i.e.,	engaging	in	actions	that	reduce	negative	emotional	outcome	(or	

increase	positive	emotional	outcome,	discussed	in	Section	5	below).	Active	coping	

can	buffer	stress	(Bowen	et	al.,	2014;	Y.	Ono	et	al.,	2012)	and	is	associated	with	

better	psychological	and	physical	health,	including	lower	vulnerability	to	depression	

and	anxiety,	as	well	as	better	pain	management	(Emmert	et	al.,	2017;	Koolhaas	et	al.,	

1999;	Russo	et	al.,	2012).	For	example,	adult	rats	allowed	to	actively	cope	with	an	

immobilization	stress	by	chewing	on	a	stick	show	reduced	HPA	activation	compared	

to	immobilized	rats	without	access	to	the	stick	(Y.	Ono	et	al.,	2012).	Similarly,	

chronic-pain	patients	who	use	active	coping	strategies,	such	as	doing	household	

chores,	report	lower	psychological	distress	(Snow-Turek,	Norris,	&	Tan,	1996).		

	 4.1.2.1.	Active	avoidance.	One	paradigm	for	studying	the	neural	basis	of	active	

coping	is	active	avoidance,	physically	moving	away	from	a	predictor	of	stress.	

Animal	models	indicate	that	active	avoidance	disrupts	fear-learning	circuitry	by	

directly	changing	connections	in	the	amygdala,	rerouting	the	amygdala	output	away	

from	brainstem	targets	that	promote	passive	coping	such	as	freezing	and	towards	a	

cortico-striatal	pathway	that	integrates	motivation	and	action	(reviewed	in	LeDoux	

&	Gorman,	2001;	LeDoux,	Moscarello,	Sears,	&	Campese,	2017),	reducing	passive	

fear	responding	not	only	in	the	short-	but	also	in	the	long-term	(Cain	&	LeDoux,	

2007).	Active	avoidance	also	recruits	MPFC	to	suppress	amygdala-based	passive	

fear	responding	both	during	learning	and	in	subsequent	tests,	even	in	novel	

environments,	suggesting	that	the	learned	active	coping	can	generalize	across	

different	environments	(Moscarello	&	LeDoux,	2013).	A	similar	neural	pathway	
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underlies	this	type	of	active	coping	in	humans,	including	reduced	amygdala	and	

autonomic	reactivity	following	avoidance	learning	(Delgado,	Jou,	LeDoux,	&	Phelps,	

2009).	Thus,	active	coping	can	strengthen	the	neural	pathway	for	active	coping	and	

hence	reduce	future	anxiety	or	negative	affect.		

	 4.1.2.2.	Controlling	the	stressor.	Another	method	of	active	coping	is	

controlling	the	stressor	itself,	when	possible.	Laboratory	rats	that	can	terminate	a	

shock	by	turning	a	wheel,	compared	to	rats	that	experience	identical	(“yoked”)	

shocks	but	without	control,	show	plasticity	in	MPFC.	Specifically,	exercising	control	

activates	MPFC,	and	this	activation	of	MPFC	in	the	presence	of	shock	seemingly	

strengthens	connections	between	MPFC	and	distressing	stimuli,	such	that	future	

distressing	stimuli,	even	if	they	are	uncontrollable,	come	to	activate	the	MPFC	and	

its	downstream	inhibitory	connections,	leading	to	a	reduction	of	amygdala	and	

brainstem	stress	responses	and	a	reduction	of	subsequent	depression-like	behavior	

(Maier,	2015).	Given	that	the	shock	is	identical	and	equally	stress-inducing	in	both	

groups,	it	is	the	exercise	of	control,	rather	than	differences	in	shock,	that	leads	to	

neural	changes	and	facilitated	coping.	A	similar	mechanism	seems	to	underlie	this	

controllability-induced	resilience	in	humans.	Specifically,	Hartley	et	al.	(2014)	found	

that	actively	escaping	uncomfortable	shocks	by	performing	a	computer	task	

facilitates	fear	extinction	learning	a	week	later	and	prevents	spontaneous	return	of	

fear,	as	measured	by	autonomic	arousal.	Furthermore,	they	found	a	strong	

correlation	between	self-reported	perception	of	control	over	the	shocks	and	the	

reduction	in	later	fear,	consistent	with	the	notion	that	experiencing	control	

strengthens	the	pathway	for	regulating	future	distress.	Similarly,	individuals	with	a	
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phobia	of	snakes	exhibit	greater	MPFC	activity	during	anticipation	of	snake	videos	

when	they	have	control	over	whether	the	videos	are	presented	compared	to	when	

they	do	not	have	control;	and	this	MPFC	activation	is	negatively	correlated	with	

amygdala	activation	(D.	L.	Kerr,	McLaren,	Mathy,	&	Nitschke,	2012),	consistent	with	

Maier’s	model	(2015)	of	controllability-induced	MPFC	inhibition	of	limbic	fear	

response.	Indeed,	this	controllability-induced	resilience	generalizes	across	different	

stressors,	suggesting	a	potential	pathway	to	preventative	intervention,	such	as	

stress	inoculation.	

	

4.1.3.	Stress	inoculation	(proactive	coping).		

Although	exposure	to	trauma	can	render	a	person	vulnerable	to	

psychopathology,	experiencing	moderate	stress	can	buffer	against	future	stress	(R.	

T.	Liu,	2015;	Seery,	2011)	(Shapero	et	al.,	2015).	For	example,	in	a	large	longitudinal	

study,	people	with	a	history	of	some	traumatic	experience	reported	lower	distress	

and	greater	life	satisfaction	compared	to	people	with	a	history	of	high	or	no	trauma	

(Seery,	Holman,	&	Silver,	2010).	Since	Levine	(1957)	serendipitously	observed	that	

briefly	separating	rat	pups	from	their	mother	improves	the	pups’	capacity	to	handle	

stressors	later	in	life,	it	has	been	suggested	that	experiencing	moderate	stress	has	an	

effect	of	“steeling”	(Rutter,	1981)	or	“toughening”	(Dienstbier,	1989)	the	individual	

against	future	stressors.	Consistent	with	this	notion,	Stress	Inoculation	Training	

(SIT)	(Meichenbaum,	1977)	has	been	used	to	successfully	treat	and	prevent	relapse	

of	depression	and	anxiety	disorders	(reviewed	in	Meichenbaum,	2017),	and	it	can	

reduce	state	anxiety	and	enhance	performance	under	stress	(reviewed	in	Saunders,	
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Driskell,	Johnston,	&	Salas,	1996).	Stress	inoculation	produces	psychological	and	

neurobiological	changes,	including	in	MPFC	and	HPA	pathways	that	facilitate	better	

management	of	subsequent	stress	(reviewed	in	Dienstbier,	1989;	Levine	&	Mody,	

2003;	Maier,	2015;	Parker	&	Maestripieri,	2011;	Russo	et	al.,	2012).	In	rodents,	

exposure	to	mild	stress	reduces	subsequent	anxiety-like	behavior	and	plasma	

glucocorticoid	stress	response	(Brockhurst,	Cheleuitte-Nieves,	Buckmaster,	

Schatzberg,	&	Lyons,	2015);	and	a	functioning	MPFC	at	the	time	of	the	initial	stress	

exposure	is	necessary	for	the	subsequent	“behavioral	immunization”	(Amat,	Paul,	

Zarza,	Watkins,	&	Maier,	2006).	Similarly,	in	squirrel	monkeys,	early	exposure	to	

mild	separation	stress	leads	to	fewer	signs	of	anxiety,	better	prefrontal-related	

cognitive	control,	and	diminished	plasma	cortisol	and	ACTH	stress	response	

(Parker,	Buckmaster,	Schatzberg,	&	Lyons,	2004)	and	increases	myelination	and	

volume	in	MPFC	(Katz	et	al.,	2009)	compared	to	non-inoculated	peers.	Even	adult	

monkeys	exposed	to	manageable	stress	can	build	resilience,	as	indicated	by	

prevention	of	stress-induced	anhedonia,	reduced	HPA	reactivity,	and	increased	

glucocorticoid	receptor	gene	expression	in	MPFC	(A.	G.	Lee,	Buckmaster,	Yi,	

Schatzberg,	&	Lyons,	2014).	Similarly,	human	neuroimaging	studies	indicate	that	

such	mild	and	phasic	parental	separation	stress	buffers	HPA	activity	and	promotes	

connectivity	between	MPFC	and	amygdala,	resulting	in	reduced	amygdala	reactivity	

later	in	life	(reviewed	in	Tottenham,	2015).	Further	supporting	a	role	of	stress-

induced	MPFC	plasticity	in	resilience	in	humans,	fMRI	study	participants	whose	

MPFC	showed	adaptation	during	sustained	stress	reported	greater	active	coping	

and	lower	maladaptive	lifestyle	behaviors	such	as	alcohol	intake	(Sinha,	Lacadie,	
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Constable,	&	Seo,	2016).		

	 	

4.2.	Cognitive	coping	and	emotion	regulation	

	 	

	 Bearing	in	mind	that	physically	confronting	or	changing	a	stressor	is	not	

always	possible	or	sufficient,	a	complementary	coping	strategy	is	to	change	or	

regulate	the	way	one	attends	to,	interprets,	or	emotionally	responds	to	the	stressor.	

These	types	of	cognitive	strategies	are	commonly	referred	to	as	emotion	regulation	

(Gross,	2015).	Highlighting	its	role	in	resilience,	emotion	dysregulation	is	a	core	

underlying	process	common	across	different	psychopathologies	(Aldao,	Nolen-

Hoeksema,	&	Schweizer,	2010;	Berking	&	Wupperman,	2012).	Consistent	with	this	

transdiagnostic	conceptualization	of	emotion	regulation,	maladaptive	emotion	

regulation	strategy	use	and	overall	emotion	dysregulation	decrease	following	

effective	psychological	treatment	across	different	disorders,	as	do	symptoms	of	

anxiety,	depression,	substance	use,	and	eating	pathology	(Sloan	et	al.,	2017).	In	this	

section,	after	I	review	cognitive	behavioral	therapy	(CBT),	a	common	and	effective	

therapy	for	many	mental	health	disorders,	I	discuss	specific	strategies	that	can	be	

implemented	during	psychological	therapy	or	in	daily	life.	First	I	discuss	strategies	

that	involve	some	form	of	explicit	acknowledgment	of	or	mental	confrontation	with	

the	negative	affect	or	experience,	namely	acceptance,	labeling,	and	disclosure.	Then	

I	review	strategies	that	involve	further	cognitive	processing,	namely	cognitive	

reappraisal	and	self-efficacy.		
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4.2.1.	Cognitive	behavioral	therapy	(CBT)	

	 CBT	is	a	structured	psychotherapy	that	utilizes	cognitive	and	behavioral	

strategies	to	change	maladaptive	tendencies	that	maintain	psychiatric	disorder	

(Clark	&	Beck,	2010).	CBT	is	an	effective	treatment	for	depression	(Cuijpers	et	al.,	

2013)	and	anxiety	(Hofmann	&	Smits,	2008),	often	considered	first-line	treatment	

(Craske	et	al.,	2017;	Tolin,	2010)	(cf	Baardseth	et	al.,	2013).	CBT	may	be	as	effective	

as	antidepressant	medication	in	treating	depression	and	anxiety	in	the	short	term,	

and	possibly	more	effective	in	the	long	term	(Clark	&	Beck,	2010;	DeRubeis,	Siegle,	

&	Hollon,	2008;	cf	Johnsen	&	Friborg,	2015).	A	review	of	10	neuroimaging	studies	

has	shown	that	CBT	for	various	anxiety	disorders	reduces	abnormal	limbic	

reactivity	in	treatment	responders	(Porto	et	al.,	2009).	For	example,	CBT	for	phobia	

reduces	reactivity	in	the	amygdala	and	other	limbic	regions,	and	the	degree	of	

amygdala-limbic	attenuation	predicts	symptom	reduction	(Furmark	et	al.,	2002;	

Lipka,	Hoffmann,	Miltner,	&	Straube,	2014).	Similarly,	cognitive	therapy	for	

depression	and	anxiety	generally	reduces	amygdala	activation	and	enhances	

prefrontal	function	(Clark	&	Beck,	2010;	DeRubeis	et	al.,	2008).	CBT	can	also	

increase	LPFC	gray	matter	volume,	which	correlates	with	improved	performance	on	

executive	control	tasks	(de	Lange	et	al.,	2008).	Furthermore,	CBT	can	increase	

amygdala	connectivity	with	LPFC-control	network	in	both	depression	and	PTSD	

(Shou	et	al.,	2017).	

	 	

4.2.2.	Confrontation	(vs.	avoidance)	strategies.		

	 Although	individual	difference	and	situational	factors	moderate	the	
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effectiveness	of	a	given	emotion	regulation	strategy	(Gross,	2015;	Segerstrom	&	

Smith,	2019),	in	general	explicit	identification	and	expression	of	a	distressing	

experience	tends	to	be	more	adaptive	than	denial	or	suppression	of	it	(Gross,	2002;	

Mund	&	Mitte,	2012;	Webb,	Miles,	&	Sheeran,	2012).	This	is	consistent	with	

behavioral	coping	strategies	for	anxiety	disorders,	such	as	exposure	therapy,	that	

emphasize	fully	confronting	the	feared	situation	and	fully	“processing”,	or	working	

through,	the	negative	experience	(Foa	&	Kozak,	1986;	Rachman,	1980).	By	writing	

or	talking	about	an	emotional	experience,	one	is	effectively	confronting	it	and	being	

exposed	to	it	cognitively	(Niles,	Byrne	Haltom,	Lieberman,	Hur,	&	Stanton,	2016).		

	 On	the	other	hand,	avoidant	strategies,	though	sometimes	adaptive	(Tabibnia	

&	Radecki,	2018;	Wortman	&	Silver,	2001),	can	often	have	negative	emotional,	

cognitive,	and	social	consequences.	For	example,	inhibiting	the	outward	expression	

of	one’s	emotions,	or	emotion	suppression,	not	only	fails	to	decrease	self-reported	

emotional	experience,	but	it	impairs	memory	and	increases	physiological	arousal	in	

both	suppressors	and	their	social	partners	(Gross,	2002).		Furthermore,	people	who	

engage	in	avoidant	coping	strategies,	such	as	denial	and	disengagement,	tend	to	

have	lower	hardiness	(Maddi	&	Hightower,	1999)	and	are	at	greater	risk	for	cancer	

and	cardiovascular	disease	(Mund	&	Mitte,	2012).		

	 4.2.2.1.	Affect	labeling.	The	simplest	way	to	explicitly	acknowledge	an	

emotion	is	to	put	it	into	words.	Merely	labeling	an	emotional	experience	with	a	

single	word,	or	affect	labeling,	can	reduce	self-reported,	autonomic,	and	amygdalar	

emotional	arousal	(Constantinou,	Van	Den	Houte,	Bogaerts,	Van	Diest,	&	Van	den	

Bergh,	2014;	Hariri,	Mattay,	Tessitore,	Fera,	&	Weinberger,	2003;	Lieberman,	
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Inagaki,	Tabibnia,	&	Crockett,	2011).	Affect	labeling	can	also	have	lasting	benefits,	

such	as	reducing	autonomic	reactivity	to	provocative	cues	a	week	after	labeling	

(Tabibnia,	Lieberman,	&	Craske,	2008)	and	enhancing	outcome	of	exposure	therapy	

(Kircanski,	Lieberman,	&	Craske,	2012)	(Niles,	Craske,	Lieberman,	&	Hur,	2015).	

Using	emotion	words	(such	as	“afraid”)	to	process	evocative	cues	(such	as	a	photo	of	

a	fearful	face)	activates	LPFC,	which	in	turn	reduces	amygdala	activation	

(Lieberman	et	al.,	2007;	Torrisi,	Lieberman,	Bookheimer,	&	Altshuler,	2013).	

Because	affective	labels	recruit	LPFC	regions	that	can	downregulate	the	amygdala,	

affect	labeling	can	dampen	emotions	even	when	people	do	not	believe	that	affective	

labeling	can	be	an	effective	emotion	regulation	strategy	(Lieberman	et	al.,	2011).	

Supporting	the	notion	that	affective	labels	can	dampen	emotions	even	in	the	

absence	of	an	explicit	intention	to	dampen	them,	a	recent	meta-analysis	of	386	

neuroimaging	studies	of	emotions	shows	that	when	emotion	words	(e.g.,	“anger,”	

“disgust”)	are	present	in	the	experimental	task,	there	is	less	activation	in	bilateral	

amygdala	than	when	emotion	words	are	not	present	(Brooks	et	al.,	2017).		

	 4.2.2.2.	Emotion	disclosure.	Another	language-based	coping	strategy	is	

emotion	disclosure,	sometimes	referred	to	as	expressive	writing.	Verbal	disclosure	

of	traumatic	experience,	such	as	simply	writing	about	the	experience	for	20	minutes,	

can	improve	physical	and	psychological	well-being	in	the	long-term	(reviewed	in	

Frattaroli,	2006;	Hemenover,	2003;	Pennebaker,	1997),	including	psychological	

health	benefits	among	individuals	with	major	depression	(Krpan	et	al.,	2013)	and	

among	caregivers	(reviewed	in	J.	P.	Riddle,	Smith,	&	Jones,	2016).	The	mechanisms	

underlying	the	benefits	of	disclosure	are	complex	and	varied,	but	they	include	
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promotion	of	self-efficacy	(Hemenover,	2003)	and	self-distancing	(Park,	Ayduk,	&	

Kross,	2016)	(see	Sections	4.2.3.	and	4.2.4.	below).	Although	neuroimaging	studies	

of	expressive	writing	are	challenging	and	still	limited,	current	work	suggests	a	

neural	mechanism	that	resembles	that	of	affect	labeling	and	reconsolidation	(see	

Sections	4.1.1	and	4.2.2.1	above).	Verbally	re-experiencing	past	trauma	allows	

reprocessing	of	the	traumatic	memory,	thus	allowing	the	formerly	implicit	

amygdala-based	memory	to	be	re-encoded	in	explicit	neocortex-based	declarative	

memory,	where	it	can	be	intentionally	accessed	and	hence	more	easily	regulated	in	

the	future	(Brewin,	2001;	Careaga,	Girardi,	&	Suchecki,	2016).	Thus,	as	with	affect	

labeling,	the	idea	is	that	words	can	help	transfer	emotion	processing	out	of	the	

reactive	limbic	system,	where	the	default	outcome	is	activation	of	distress	circuits,	

and	into	the	neocortex	where	control	can	be	exerted.	Consistent	with	this	

framework,	self-reported	tendency	to	self-disclose	is	correlated	with	gray	matter	

volume	in	LPFC	(Wang	et	al.,	2014)	and	activity	in	LPFC	and	amygdala	during	affect	

labeling	predicts	disclosure	effects	on	physical	symptoms,	depression,	anxiety,	and	

life	satisfaction	(Memarian,	Torre,	Haltom,	Stanton,	&	Lieberman,	2017).	Further	

supporting	the	beneficial	impact	of	verbal	disclosure	on	distress	networks,	writing	a	

narrative	of	their	marital	separation	improved	newly	separated	adults’	ANS	function	

several	months	later	(Bourassa,	Allen,	Mehl,	&	Sbarra,	2017).			

	 4.2.2.3.	Emotion	acceptance.	The	opposite	of	experiential	avoidance,	

acceptance	has	been	described	as	a	form	of	cognitive	“exposure”	and	refers	to	the	

willingness	to	experience	all	emotions,	physical	sensations,	and	thoughts,	even	if	

they	are	negative	(Hayes,	2004).	Because	it	acts	in	the	early	stages	of	emotion	
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regulation	(Dan-Glauser	&	Gross,	2015),	acceptance	can	reduce	ongoing	emotional	

reactivity	and	the	need	for	further	regulation	(Lindsay	&	Creswell,	2017).	Compared	

to	avoidance,	acceptance	predicts	better	mental	health	outcomes	when	faced	with	

adversity,	such	as	breast	cancer	(Carver	et	al.,	1993),	one’s	child	undergoing	bone	

marrow	transplant	(Manne	et	al.,	2003),	and	a	terrorist	attack	(Silver,	Holman,	

McIntosh,	Poulin,	&	Gil-Rivas,	2002).		In	randomized	trials,	acceptance	and	

commitment	therapy	(ACT)	is	found	to	be	as	effective	as	cognitive	therapies	for	

treating	anxiety	and	depressive	disorders,	and	self-reported	acceptance	underlies	

reductions	in	symptom	severity	(Arch	et	al.,	2012;	Forman,	Herbert,	Moitra,	

Yeomans,	&	Geller,	2007).	A	meta-analysis	of	30	experimental	comparisons	between	

acceptance	and	other	emotion	regulation	strategies	(e.g.	suppression,	distraction,	

reappraisal)	found	that	acceptance	is	superior	in	boosting	pain	tolerance	and	at	

least	as	effective	in	reducing	subjective	pain	intensity	and	negative	affect	(Kohl,	Rief,	

&	Glombiewski,	2012).	The	neurobiological	underpinnings	of	emotion	acceptance	

are	still	unclear,	but	existing	studies	point	to	involvement	of	an	LPFC-amygdala	

network.	In	samples	of	remitted	major	depressive	disorder	and	healthy	control	

participants,	acceptance	versus	passive	viewing	of	sad	images	reduced	self-reported	

negative	affect	and	activated	LPFC	(Smoski	et	al.,	2015).	In	another	study,	

individuals	with	generalized	anxiety	disorder	showed	greater	LPFC-amygdala	

functional	connectivity	during	acceptance	of	personally	relevant	worry-inducing	

statements	compared	to	either	suppression	of	or	worry	about	those	statements	

(Ellard,	Barlow,	Whitfield-Gabrieli,	Gabrieli,	&	Deckersbach,	2017).	Similarly,	

greater	inverse	connectivity	between	LPFC	and	amygdala	during	affect	labeling,	an	
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emotion	regulation	strategy	akin	to	acceptance,	both	predicts	(K.	S.	Young	et	al.,	

2019)	and	follows	(K.	S.	Young	et	al.,	2017)	greater	symptom	reduction	following	

psychological	therapy,	including	ACT,	for	social	anxiety.		

	 	

4.2.3.	Cognitive	reappraisal	(incl.	distancing).		

	 Cognitive	reappraisal	refers	to	the	reframing	of	a	situation	in	order	to	alter	

its	emotional	impact	(Gross,	2002).	Most	typical	reappraisal	tactics	are	

reinterpretation	and	distancing.	Reinterpretation	involves	construing	an	alternative	

outcome	or	meaning	for	a	situation	(e.g.,	reinterpreting	being	stuck	in	traffic	as	an	

opportunity	to	listen	to	a	podcast),	while	distancing,	aka	“perspective	taking”,	

involves	construing	a	perspective	that	increases	psychological	distance	(e.g.,	

appraising	the	situation	as	if	it	had	happened	to	someone	else)	(Powers	&	LaBar,	

2019).	Meta-analyses	of	the	effectiveness	of	various	emotion	regulation	strategies	

identify	cognitive	reappraisal,	particularly	distancing,	as	one	of	the	most	effective	

(Augustine	&	Hemenover,	2009;	Webb	et	al.,	2012).	(In	the	review	by	Webb	and	

colleagues	(2012),	emotion	acceptance	was	construed	as	a	form	of	reappraisal,	

which,	along	with	distancing,	was	among	the	most	effective	strategies.)	People	who	

report	frequently	using	reappraisal	exhibit	better	psychological	health,	while	

laboratory	participants	instructed	to	use	cognitive	reappraisal	during	a	negative	

experience	report	less	negative	emotion	and	show	lower	autonomic	arousal	

(reviewed	in	John	&	Gross,	2004).	Cognitive	reappraisal	is	an	important	component	

of	well-established	and	effective	therapies	for	affective	and	anxiety	disorders,	and	it	

is	associated	with	greater	well-being	in	the	face	of	stress	(reviewed	in	Southwick	&	
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Charney,	2012;	Troy	&	Mauss,	2011).		

	 A	review	of	48	neuroimaging	studies	reports	that	cognitive	reappraisal	

reduces	activation	in	the	amygdala	and	increases	it	in	LPFC	regions	associated	with	

cognitive	control,	among	other	regions	(Buhle	et	al.,	2014),	a	neural	pattern	that	has	

been	associated	with	successful	reappraisal	(Klumpp	et	al.,	2018).	Functional	

(Morawetz,	Bode,	Baudewig,	&	Heekeren,	2017)	and	anatomical	(d'Arbeloff	et	al.,	

2018)	connectivity	between	LPFC	and	amygdala	also	play	important	roles	in	

reappraisal.	Supporting	a	causal	role	of	LPFC	in	reappraisal	success,	transcranial	

stimulation	of	LPFC	during	reappraisal	of	negative	images	alters	autonomic	

response	and	reduces	self-reported	emotional	reactivity	(Feeser,	Prehn,	Kazzer,	

Mungee,	&	Bajbouj,	2014;	Marques,	Morello,	&	Boggio,	2018).	Reappraisal	may	also	

have	long-term	effects;	repeatedly	reappraising	an	aversive	image	reduces	

amygdala	response	to	that	image	a	week	later	compared	to	repeated	exposure	

without	reappraisal	(Denny,	Inhoff,	Zerubavel,	Davachi,	&	Ochsner,	2015).	

Neuroimaging	studies	targeting	distancing	specifically	also	generally	show	

decreased	amygdala	and	increased	LPFC	activation	(reviewed	in	Powers	&	LaBar,	

2019),	some	also	showing	reduced	activation	in	MPFC,	potentially	explained	by	this	

region’s	involvement	in	rumination	(Kross,	Davidson,	Weber,	&	Ochsner,	2009;	

Leitner	et	al.,	2017;	Moser	et	al.,	2017).	

	 	

4.2.4.	Self-efficacy	and	perception	of	control.		

	 Not	only	do	appraisals	of	events	affect	emotional	response	and	ultimately	

resilience,	so	do	self-appraisals	or	beliefs	about	the	self.	In	particular,	self-efficacy,	
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the	belief	in	one’s	ability	to	master	life’s	challenges,	is	protective	against	psychiatric	

symptoms,	including	depression	and	posttraumatic	stress,	and	facilitates	recovery	

from	a	wide	range	of	traumas	(Benight	&	Bandura,	2004;	Blackburn	&	Owens,	2015;	

Schwarzer	&	Warner,	2013).	Self-efficacy	and	perceived	control	can	also	facilitate	

smoking	cessation	(Schnoll	et	al.,	2011;	Schuck,	Otten,	Kleinjan,	Bricker,	&	Engels,	

2014),	reduce	cigarette	craving	(M.	Ono	et	al.,	2017),	mediate	the	effect	of	therapy	

on	social	anxiety	disorder	(Goldin	et	al.,	2012),	and	improve	fear	extinction	

(Zlomuzica,	Preusser,	Schneider,	&	Margraf,	2015)	and	emotion	regulation	(Morina	

et	al.,	2018).	Importantly,	perception	of	control	even	in	the	absence	of	true	control	

can	be	beneficial,	such	as	by	reducing	the	perception	of	pain	(Bowers,	1968;	Mackie,	

Coda,	&	Hill,	1991).	Uncontrollable	pain	that	is	perceived	as	“controllable”	results	in	

reduced	activation	in	the	pain	network,	including	the	ACC,	insula,	and	secondary	

somatosensory	cortex	(Salomons,	Johnstone,	Backonja,	&	Davidson,	2004).	And	this	

controllability-induced	reduction	in	pain	is	driven	by	increased	activation	in	LPFC	

(Brascher,	Becker,	Hoeppli,	&	Schweinhardt,	2016;	Wiech	et	al.,	2006).	

Neuroimaging	studies	of	self-efficacy	also	implicate	a	role	of	PFC.	Consistent	with	

the	critical	role	of	MPFC	in	active	coping	(see	Section	4.1.2	above),	self-reported	

self-efficacy	and	a	larger	MPFC	are	correlated	with	one	another	and	with	lower	

levels	of	psychopathology	in	women	(Holz	et	al.,	2016).	Additionally,	boosting	self-

efficacy	alters	resting	state	connectivity	in	MPFC	and	LPFC	(Titcombe-Parekh	et	al.,	

2018),	and	regulating	craving	with	a	self-efficacy	strategy	activates	MPFC	and	alters	

MPFC	connectivity	(M.	Ono	et	al.,	2017).	Furthermore,	reappraising	negative	self-

beliefs	decreases	amygdala	reactivity	and	increases	PFC-amygdala	connectivity	
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(Goldin,	Manber-Ball,	Werner,	Heimberg,	&	Gross,	2009;	Goldin	et	al.,	2013).		

	 	

4.2.5.	Cognitive	bias	modification	(CBM).	

	 Negativity	bias,	or	the	tendency	to	attend	to	negative	cues	and	interpret	

ambiguity	in	negative	ways,	can	be	modified	with	training,	in	turn	reducing	

depression	and	anxiety	symptoms	(Hertel	&	Mathews,	2011).	This	training,	broadly	

referred	to	as	cognitive	bias	modification	(CBM),	involves	repeated	trials	on	

computerized	tasks	originally	developed	to	measure	cognitive	bias,	such	as	the	dot	

probe	task	which	can	both	measure	and	manipulate	negativity	bias	in	attention	

(Hallion	&	Ruscio,	2011).	Despite	some	inconsistencies	in	the	literature,	recent	

reviews	suggest	that	CBM	for	interpretation	may	reduce	depression	symptoms	

(Koster	&	Hoorelbeke,	2015),	while	attention	bias	modification	(ABM)	may	reduce	

anxiety	symptoms	(reviewed	in	Jones	&	Sharpe,	2017;	Mogg,	Waters,	&	Bradley,	

2017).	Due	to	the	smaller	literature	on	CBM	for	interpretation	relative	to	ABM,	here	

I	focus	on	ABM.	Neuroimaging	studies	of	ABM	have	shown	that	training	with	

modified	dot	probe	tasks	increases	LPFC	activation	(Browning,	Holmes,	Murphy,	

Goodwin,	&	Harmer,	2010;	Taylor	et	al.,	2014)	and	decreases	amygdala	activation	to	

affective	stimuli	(Hiland	et	al.,	2019;	Taylor	et	al.,	2014)	(cf	Britton	et	al.,	2015).	

Supporting	a	causal	role	of	LPFC	in	ABM,	anxious	(Clarke,	Browning,	Hammond,	

Notebaert,	&	MacLeod,	2014;	Heeren	et	al.,	2017)	and	healthy	(Ironside,	O'Shea,	

Cowen,	&	Harmer,	2016)	participants	receiving	transcranial	stimulation	over	LPFC	

before	or	during	training	subsequently	show	greater	ABM	than	participants	

receiving	sham	stimulation.	In	fact,	transcranial	stimulation	over	LPFC,	when	
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repeated	over	several	sessions,	has	been	touted	as	a	potentially	useful	therapeutic	

tool	for	reducing	psychiatric	symptoms	(Kekic,	Boysen,	Campbell,	&	Schmidt,	2016),	

and	ABM	may	mediate	the	positive	effect	of	transcranial	stimulation	on	emotional	

resilience	(N.	T.	M.	Chen,	Basanovic,	Notebaert,	MacLeod,	&	Clarke,	2017).	

	 	

4.3.	Summary	of	strategies	that	down-regulate	the	negative.	

	

	 The	strategies	reviewed	in	this	section	all	show	evidence	of	recruiting	the	

distress-reduction	pathway.	Specifically,	each	strategy	reduces	the	distress	response	

of	amygdala,	HPA,	and/or	ANS.	Many	of	the	strategies	(e.g.,	exposure,	active	coping,	

stress	inoculation,	and	CBT)	can	also	lead	to	neuroplasticity	along	the	PFC-amygdala	

emotion-regulation	pathway	(Table	1).		

	

	

5.	Up-Regulating	the	Positive	

	

	 In	this	section,	I	review	strategies	that	have	been	shown	to	increase	positive	

affect	and	activate	mesostriatal	reward	pathways.	The	benefits	of	positive	affect,	

ranging	from	longevity	to	better	physical	and	psychological	well-being,	have	been	

known	for	some	time	(S.	Cohen	&	Pressman,	2006;	Lyubomirsky,	King,	&	Diener,	

2005;	Scheier	&	Carver,	1993;	Steptoe,	2019)	and	are	the	focus	of	a	subfield	of	

psychology	known	as	positive	psychology	(Seligman,	2019).	Conversely,	paucity	of	

positive	affect	is	a	risk	factor	for	psychiatric	disease	(Keyes,	Dhingra,	&	Simoes,	
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2010).	Similarly,	excessively	denying	oneself	life’s	indulgences	and	pleasures,	such	

as	foregoing	vacation	or	a	night	out	in	favor	of	working,	can	hinder one’s emotional, 

physical, and even economical well-being (Kivetz, Meng, & He, 2017).	Thus,	

psychological	interventions	that	incorporate	positive	psychology	(reviewed	in	

Bolier	et	al.,	2013;	in	Seligman,	2019;	and	in	Sin	&	Lyubomirsky,	2009),	such	as	

“well-being	therapy”	(Fava,	1999;	Ryff,	2014)	and	“positive	psychotherapy”	

(Seligman,	2019),	can	be	more	effective	at	preventing	mental	and	physical	disease	

and	their	relapse	compared	to	interventions	without	positivity	training.	

	 Positive	emotions	can	not	only	provide	a	respite	from	ongoing	stress	but	they	

can	also	facilitate	adaptation	to	future	stress.	In	her	broaden-and-build	model,	

Fredrickson	has	argued	that	positive	emotions	broaden	the	individual's	attentional	

focus	(see	Isen,	2008)	and	behavioral	repertoire,	prompting	the	individual	to	

explore	and	experiment	with	novel	or	creative	coping	strategies,	thus	building	over	

time	an	arsenal	of	physical,	psychological,	and	social	resources	that	can	later	be	

drawn	upon	for	successful	coping	with	a	stressor	(Fredrickson,	2004;	cf	Gable	&	

Harmon-Jones,	2008).	Examples	of	resources	that	positive	emotions	can	help	build	

include	self-efficacy	beliefs	(see	Section	4.2.4	above	and	Section	5.1.4	below),	social	

support	(see	Sections	5.1.1	and	5.3	below),	and	vagal	tone	(Fredrickson,	2013).	

Positive	affect	can	also	facilitate	learning,	including	fear	extinction	learning	

(Meulders,	Meulders,	&	Vlaeyen,	2014;	Zbozinek	&	Craske,	2018).	Thus,	an	upward	

spiral	of	positivity	can	occur	whereby	momentary	positive	affect	leads	to	broadened	

attention	which	can	facilitate	coping	with	adversity	and	build	resources	that	

promote	future	well-being	and	resilience	(Fredrickson	&	Joiner,	2002).		
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	 There	are	numerous	ways	to	boost	positive	emotions	and	well-being.	The	

Blue	Zone	investigations,	studies	of	geographic	regions	with	the	greatest	longevity,	

consistently	identify	several	lifestyle	factors	associated	with	longevity,	including	

physical	exercise,	engagement	in	social	and	family	life,	and	moderate	caloric	intake,	

among	other	factors	(Buettner,	2012).	Psychological	exercises,	such	as	writing	

letters	of	gratitude	or	practicing	optimism,	can	also	boost	positive	affect	and	

resilience	(Layous,	Chancellor,	Lyubomirsky,	Wang,	&	Doraiswamy,	2011;	

Lyubomirsky,	Sheldon,	&	Schkade,	2005).	Below	I	separately	review	a	number	of	

different	psychological,	physical,	and	social	practices	that	can	activate	reward	

pathways	and	boost	positive	affect	and	resilience.	 

		

5.1.	Psychological	strategies	(positivity)	

	

	 Resilient	individuals	are	characterized	by	high	positive	emotionality	and	

dispositional	optimism	(Carver	&	Scheier,	2014;	S.	Cohen	&	Pressman,	2006)	and	

demonstrate	more	adaptive	responding	in	the	mesolimbic	reward	pathway	during	

stress	(Krishnan	et	al.,	2007).	These	positivity-related	characteristics	are	not	

immutable	and	can	be	cultivated,	as	reviewed	below.	

	 	

5.1.1.	Optimism		

	 Across	numerous	studies,	optimism,	or	the	tendency	to	expect	favorable	

outcomes,	has	been	associated	with	better	psychological	well-being	during	times	of	

stress	(even	after	controlling	for	previous	well-being),	along	with	increased	success	
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in	one’s	educational,	economic,	and	social	endeavors	(reviewed	in	Carver	&	Scheier,	

2014),	as	well	as	greater	longevity	(L.	O.	Lee	et	al.,	2019)	and	physical	health	

(reviewed	in	Scheier	&	Carver,	2018).	These	effects	are	not	merely	correlational.	

Learning	to	have	a	more	optimistic	explanatory	style—attributing	negative	life	

events	to	forces	that	are	temporary	and	confined—promotes	resilience	(Seligman	et	

al.,	1988),	and	incorporating	optimism	training,	such	as	in	the	Penn	Resilience	

Program,	has	proven	particularly	effective	in	treating	and	preventing	depression	

(Reivich,	Gillham,	Chaplin,	&	Seligman,	2013;	Seligman,	Steen,	Park,	&	Peterson,	

2005).	Even	engaging	in	a	simple	exercise	of	imagining	one’s	best	possible	self	can	

increase	optimism	and	subjective	well-being,	at	least	temporarily	(L.	A.	King,	2001;	

Meevissen,	Peters,	&	Alberts,	2011),	and	subsequently	decrease	pain	perception	

(Hanssen,	Peters,	Vlaeyen,	Meevissen,	&	Vancleef,	2013)	and	reduce	the	number	of	

illness-related	health	center	visits	5	months	later	(L.	A.	King,	2001).	However,	

optimism	does	not	always	enhance	resilience	(Segerstrom,	2005),	and	unmitigated	

unrealistic	optimism	can	even	be	harmful,	such	as	in	gambling.	Thus,	an	adaptive	

outlook	may	be	“mostly	optimistic,	tempered	with	small	doses	of	realistic	pessimism	

when	needed”	(Forgeard	&	Seligman,	2012).	

	 Our	understanding	of	the	neural	basis	of	optimism	comes	from	a	few	

disparate	lines	of	research.	Extensive	animal	studies	have	demonstrated	that	

expectation	of	a	positive	outcome	(i.e.,	the	definition	of	optimism),	such	as	

anticipation	of	food	reward,	activates	dopamine	neurons	in	the	mesostriatal	reward	

pathway	(Schultz	et	al.,	1997),	a	finding	paralleled	by	human	neuroimaging	studies	

(e.g.,	Knutson,	Adams,	Fong,	&	Hommer,	2001).	Further	supporting	a	role	of	



	

Page 41 of 123	

dopamine	in	optimism,	Sharot	et	al.	(2012)	have	shown	that	administration	of	the	

dopamine	precursor	L-DOPA	increases	an	optimism	bias.	Similarly,	mesostriatal	

reward	networks,	including	regions	such	as	MPFC	and	ventral	striatum,	have	been	

implicated	in	the	generation	of	optimistically	biased	self-related	belief	changes	(e.g.,	

lowering	one’s	estimate	of	getting	cancer)	(Kuzmanovic,	Jefferson,	&	Vogeley,	2016),	

as	well	as	in	the	tendency	to	maintain	optimistic	self-appraisals	(Yamada	et	al.,	

2013),	even	in	the	face	of	social	evaluative	threat	(Flagan	&	Beer,	2013).	

Furthermore,	several	studies	have	shown	that	imagining	future	personally	

rewarding	events	also	activate	reward-related	regions	such	as	MPFC	and	ventral	

striatum	(Benoit,	Szpunar,	&	Schacter,	2014;	D'Argembeau,	Xue,	Lu,	Van	der	Linden,	

&	Bechara,	2008;	Gerlach,	Spreng,	Madore,	&	Schacter,	2014).	Finally,	a	recent	

structural	MRI	study	found	that	the	only	brain	region	whose	gray	matter	associated	

with	dispositional	optimism	is	the	putamen,	a	reward-related	region	of	the	striatum	

(Lai,	Wang,	Zhao,	Qiu,	&	Gong,	2019).	 	

	 	

5.1.2.	Smiling	

	 Consistent	with	Darwin’s	claim	that	the	strength	of	emotional	experience	can	

be	modulated	by	intensifying	or	inhibiting	the	expression	of	the	emotion	(Darwin,	

Ekman,	&	Prodger,	1998),	the	“facial	feedback	hypothesis”	posits	that	facial	

expressions	can	affect	emotional	experience,	even	when	people	are	not	aware	of	

making	the	expression	(Damasio,	Everitt,	&	Bishop,	1996;	Tourangeau	&	Ellsworth,	

1979).	Numerous	studies	have	reported	covariance	between	smiling	and	positive	

affective	experience	(reviewed	in	Fernández-Dols	&	Crivelli,	2013;	Reisenzein,	
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Studtmann,	&	Horstmann,	2013).	Similarly,	intensity	of	smiling	in	photographs	

predict	life	satisfaction	(Seder	&	Oishi,	2011)	and	longevity	(Abel	&	Kruger,	2010).	

Importantly,	a	recent	meta-analysis	indicates	a	small	but	reliable	effect	of	facial	

expression	on	self-reported	happiness	and	positive	affect	(Coles,	Larsen,	&	Lench,	

2019),	and	preliminary	results	from	a	multi-lab	replication	project	corroborate	

these	findings	(N.	Coles	et	al.,	2019).	For	example,	encouraging	participants	to	smile	

without	realizing	that	they	are	smiling	(e.g.,	by	instructing	them	to	hold	chopsticks	

between	their	teeth)	can	counteract	reductions	in	positive	affect	during	a	stressful	

experience	and	lower	heart	rate	during	stress	recovery	(Kraft	&	Pressman,	2012).	

Indeed,	voluntary	smiling	can	activate	the	same	patterns	of	regional	brain	activity	as	

spontaneous	smiling	(Ekman	&	Davidson,	1993).	There	is	also	evidence	that	the	

mere	act	of	forming	a	smile,	whether	by	following	instructions	to	pull	up	lip	corners	

and	relax	the	face	(Hennenlotter	et	al.,	2005)	or	by	imitating	another	person’s	smile	

(Hsu,	Sims,	&	Chakrabarti,	2018;	T.	W.	Lee,	Josephs,	Dolan,	&	Critchley,	2006),	

uniquely	activates	the	striatum,	MPFC,	and	amygdala.	Consistent	with	a	role	of	the	

mesial	dopaminergic	network	in	smiling	and	mood,	patients	with	Parkinson’s	

disease,	involving	degeneration	of	the	mesostriatal	dopamine	neurons,	have	deficits	

in	smiling	(Marsili	et	al.,	2014)	and	in	the	experience	of	positive	affect	(Cummings,	

1992).	

	 	

5.1.3.	Humor	

	 Humor	is	another	venue	for	increasing	positive	affect	and	boosting	resilience.	

Using	and	appreciating	humor	have	been	associated	with	resilience	in	multiple	
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vulnerable	populations,	including	combat	veterans,	firefighters,	patients	with	

serious	illness,	and	mothers	of	children	with	serious	illness	(e.g.,	Sliter,	Kale,	&	Yuan,	

2014)	(reviewed	in	Kuiper,	2012;	and	in	Southwick	et	al.,	2005).	A	longitudinal	

study	of	over	50K	participants	in	Norway	found	that	self-reported	ability	to	

recognize	humor	is	associated	with	lower	mortality	(Romundstad,	Svebak,	Holen,	&	

Holmen,	2016).	Genuine	laughter	and	smiling	when	talking	about	a	recent	loss	is	

associated	with	better	coping	over	time	(Bonanno,	2004).	Experimental	studies	also	

indicate	a	causal	effect	of	humor	on	resilience	(Kuiper,	2012).	For	example,	using	

humor	reduces	state	anxiety	in	response	to	a	stressful	event	(Ford,	Lappi,	O’Connor,	

&	Banos,	2017)	and	increases	subjective	well-being	(Maiolino	&	Kuiper,	2016).	

Observing	humorous	material	such	as	funny	cartoons	activates	brain	regions	in	

mesostriatal	reward	pathways,	including	VTA,	nucleus	accumbens,	amygdala,	and	

MPFC	(Chan	et	al.,	2018;	Goel	&	Dolan,	2001;	Mobbs,	Greicius,	Abdel-Azim,	Menon,	&	

Reiss,	2003;	Shibata,	Terasawa,	&	Umeda,	2014),	and	subjective	funniness	of	the	

observed	material	correlates	positively	with	activation	in	these	regions	(Bartolo,	

Benuzzi,	Nocetti,	Baraldi,	&	Nichelli,	2006;	Jaaskelainen	et	al.,	2016;	Mobbs	et	al.,	

2003).	Generating	humorous	captions	for	cartoons	also	activates	these	reward	

regions	(Amir	&	Biederman,	2016).	Interestingly,	the	trait	emotional	stability	(i.e.,	

the	opposite	of	neuroticism)	correlates	with	increased	activation	in	this	network	

during	observation	of	humorous	material	(Mobbs,	Hagan,	Azim,	Menon,	&	Reiss,	

2005),	suggesting	a	connection	between	emotional	resilience	and	mesostriatal	

activation	to	humor.			
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5.1.4.	Self-affirmation		

	 At	the	root	of	self-affirmation	theory	is	the	idea	that	people	are	deeply	

motivated	to	maintain	self-integrity,	or	a	perception	of	self	as	“morally	and	

adaptively	adequate”	(G.	L.	Cohen	&	Sherman,	2014).	Self-affirmation	in	an	act	

designed	to	affirm	one’s	self-integrity,	typically	by	reflecting	on	sources	of	self-

worth	such	as	important	personal	values,	personal	qualities,	or	social	relationships	

(reviewed	in		G.	L.	Cohen	&	Sherman,	2014;	Steele,	1988).	For	example,	writing	

about	an	important	personal	value	can	reduce	negative	affect	and	boost	positive	

affect	following	social	rejection	(Hales,	Wesselmann,	&	Williams,	2016).	Self-

affirmation	can	also	facilitate	executive	functions	that	are	important	for	resilience,	

such	as	problem-solving	under	stress	(Creswell,	Dutcher,	Klein,	Harris,	&	Levine,	

2013)	and	exerting	self-control	(Churchill,	Jessop,	Green,	&	Harris,	2018;	P.	S.	Harris,	

Harris,	&	Miles,	2017;	Schmeichel	&	Vohs,	2009),	even	2+	years	after	the	

intervention	(Logel,	Kathmandu,	&	Cohen,	2018).	Similarly,	writing	about	personal	

core	values,	such	as	close	relationships	or	religion,	can	buffer	against	being	

negatively	stereotyped	and	improve	academic	performance,	even	years	after	

intervention	(e.g.,	Brady	et	al.,	2016).	Neurobiologically,	self-affirmation	can	buffer	

stress	and	be	rewarding.	Writing	about	important	personal	values	prior	to	a	very	

stressful	exam	can	prevent	the	increase	in	urinary	epinephrine	levels,	a	marker	of	

ANS	stress	response,	associated	with	the	exam	(Sherman,	Bunyan,	Creswell,	&	

Jaremka,	2009).	Furthermore,	reflecting	on	one’s	top	values	increases	positive	affect	

(Hales	et	al.,	2016;	Nelson,	Fuller,	Choi,	&	Lyubomirsky,	2014)	and	activates	brain	

regions	associated	with	reward,	including	ventral	striatum	and	MPFC	(Cascio	et	al.,	
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2016;	Dutcher	et	al.,	2016).		

	 	

5.1.5.	Reactivating	positive	memories	

	 Another	strategy	for	increasing	positive	affect	and	boosting	resilience	is	

recalling	positive	memories	(i.e.,	remembering	the	good	times).	Autobiographical	

affective	recall,	or	imagining	a	past	emotional	experience,	is	thought	to	reactivate	

the	emotions	associated	with	the	original	experience,	and	it	is	a	common	technique	

for	mood	induction	in	laboratory	studies	(Westermann,	Spies,	Stahl,	&	Hesse,	1996).	

Recalling	positive	autobiographical	memories	has	also	been	used	as	a	successful	

clinical	tool,	for	increasing	positive	affect	among	individuals	with	schizophrenia	

(Johnson,	Gooding,	Wood,	Fair,	&	Tarrier,	2013),	PTSD	(Panagioti,	Gooding,	&	

Tarrier,	2012),	and	major	depression	(Arditte	Hall,	De	Raedt,	Timpano,	&	Joormann,	

2018).	Positive	reminiscence	can	also	reduce	distress.	In	a	groundbreaking	study,	

artificially	reactivating	positive	memories	in	mice,	by	inducing	the	firing	of	

hippocampal	neurons	that	had	been	active	during	a	prior	positive	experience,	

alleviated	depression-like	behavior	through	a	hippocampus–amygdala–accumbens	

pathway	(Ramirez	et	al.,	2015),	implicating	an	important	role	of	the	reward	

pathway	in	the	beneficial	effect	of	positive	reminiscence.	In	humans,	reminiscing	

about	a	past	positive	experience	activates	the	mesostriatal	reward	pathway,	

including	nucleus	accumbens	and	MPFC	(Speer	&	Delgado,	2017;	Suardi,	Sotgiu,	

Costa,	Cauda,	&	Rusconi,	2016),	and	it	reduces	cortisol	rise	and	negative	affect	in	

response	to	a	laboratory	stressor	(Speer	&	Delgado,	2017).	Activation	in	these	

reward-related	regions	during	positive	reminiscence	is	correlated	with	self-



	

Page 46 of 123	

reported	positive	affect,	and,	notably,	with	a	self-reported	measure	of	resilience	

(Speer,	Bhanji,	&	Delgado,	2014).		

	

5.2.	Physical	health	strategies	

	

Given	the	reciprocal	relationship	between	the	brain	and	body,	improving	

physical	health	can	help	boost	physical	AND	psychological	resilience	(McEwen	&	

Gianaros,	2011).	Chief	among	health-improving	factors	are	sleep,	exercise,	and	diet.	

I	will	not	cover	nutrition,	as	it	is	beyond	the	scope	of	this	paper	and	is	reviewed	

elsewhere	(e.g.,	Gomez-Pinilla,	2008;	Goyal,	Iannotti,	&	Raichle,	2018).	Instead,	I	will	

discuss	two	topics	related	to	food	intake	and	the	digestive	system,	namely	food	

restriction	and	gut	microbiota,	both	of	which	can	affect	brain	function	and	mood.		

	

5.2.1.	Sleep	

	 Getting	sufficient	sleep	is	important	for	health.	Conversely,	sleep	deprivation	

is	a	stressor,	with	negative	consequences	for	the	brain	and	the	rest	of	the	body.	

Chronic	sleep	deprivation	increases	blood	pressure,	as	well	as	levels	of	cortisol,	

insulin,	and	pro-inflammatory	cytokines	(McEwen,	2006).	Lack	of	sleep	is	also	

associated	with	increased	markers	of	systemic	inflammation,	which	in	turn	are	

linked	with	subsequent	physical	and	mental	health	problems	(Irwin,	Olmstead,	&	

Carroll,	2016).	Several	different	lines	of	work	suggest	that	sleep	affects	psychiatric	

health	and	well-being	(reviewed	in	Rumble,	White,	&	Benca,	2015;	Vandekerckhove	

&	Cluydts,	2010).	For	example,	patients	with	insomnia	symptoms	are	more	likely	to	
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develop	future	depression	than	those	without	insomnia	symptoms,	and	treating	

sleep	disturbance	can	help	improve	mood	(Rumble	et	al.,	2015).	Similarly,	

improving	sleep	duration	and	quality	is	associated	with	better	subsequent	physical	

and	emotional	well-being	(N.	K.	Tang,	Fiecas,	Afolalu,	&	Wolke,	2017).	Sleep	may	

also	help	with	recovery	from	stress	and	trauma	(A.	N.	Goldstein	&	Walker,	2014).	

The	neurobiological	pathways	from	sleep	to	resilience	include	the	fear/stress	and	

the	dopaminergic	reward	networks	(Krause	et	al.,	2017).	In	rodents	and	humans,	

sleep	restriction	can	elevate	the	activity	of	sympathetic	and	HPA	systems	(reviewed	

in	Meerlo,	Sgoifo,	&	Suchecki,	2008)	and	potentiate	HPA	stress	reactivity	(reviewed	

in	van	Dalfsen	&	Markus,	2018).	Sleep	deprivation	also	impairs	amygdala	

discrimination	of	threat	cues	(Goldstein-Piekarski,	Greer,	Saletin,	&	Walker,	2015)	

and	heightens	amygdala	response	to	such	cues,	along	with	a	reduction	in	amygdala-

MPFC	functional	connectivity	(Motomura	et	al.,	2013;	Yoo,	Gujar,	Hu,	Jolesz,	&	

Walker,	2007)	that	is	directly	correlated	with	self-reported	anxiety	(Motomura	et	

al.,	2013).	The	dopaminergic	reward	network	is	also	affected	by	sleep	and	is	in	fact	

activated	during	sleep	(Perogamvros	&	Schwartz,	2012).	Sleep	deprivation	leads	to	

selective	disruptions	in	MPFC-to-accumbens	signaling	(Z.	Liu	et	al.,	2016),	reduces	

gray	matter	volume	in	nucleus	accumbens	(Whitman	et	al.,	2017),	and	

downregulates	dopamine	receptors	in	ventral	striatum	(Volkow	et	al.,	2012),	

ultimately	resulting	in	inaccurate	reward	coding	(reviewed	in	Krause	et	al.,	2017).	

	

5.2.2.	Exercise	

	 The	positive	consequences	of	physical	exercise	have	been	well	studied	and	
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include	improved	physical	health,	mental	health,	and	cognitive	function	(reviewed	

in	Ashdown-Franks	et	al.,	2020;	Kramer	&	Erickson,	2007;	Penedo	&	Dahn,	2005;	

Warburton	&	Bredin,	2017)	[also	see	(Diamond	&	Ling,	2019)].	The	pathway	from	

exercise	to	these	benefits	is	complex,	but	the	mesostriatal	reward	network	plays	an	

important	role.	Physical	exercise,	whether	acute	or	chronic,	is	generally	considered	

rewarding,	as	evidenced	by	rodents’	behavior	when	given	the	opportunity	to	

exercise	such	as	on	a	running	wheel	(Basso	&	Morrell,	2015;	Belke	&	Wagner,	2005;	

Greenwood	et	al.,	2011),	by	increased	striatal	dopamine	activity	following	exercise	

(Basso	&	Morrell,	2015;	Greenwood	et	al.,	2011;	Meeusen	&	Fontenelle,	2012),	and	

by	human	self-report	(Boecker	et	al.,	2008;	Saanijoki	et	al.,	2018).	For	example,	

wheel	running	in	rats	induces	a	preference	for	the	environment	associated	with	the	

running,	along	with	plasticity	in	the	VTA	and	ventral	striatum	(Greenwood	et	al.,	

2011;	Herrera	et	al.,	2016).	These	changes	in	the	reward	network	in	turn	may	

underlie	the	positive	effect	of	exercise	on	stress	resilience	(Marais,	Stein,	&	Daniels,	

2009;	Mul	et	al.,	2018),	as	disruption	of	this	reward	pathway	during	exercise	

eliminates	its	stress-buffering	effect	(Mul	et	al.,	2018).	In	humans,	exercise	modifies	

an	estimated	80%	of	brain	gray	matter,	including	ventral	striatum	and	MPFC	

(Batouli	&	Saba,	2017)	and	has	a	neuro-protective	effect	on	striatal	dopamine	

receptors	(Dang	et	al.,	2017;	Robertson	et	al.,	2016).	One	potential	mechanism	

underlying	the	positive	effect	of	exercise	on	resilience	may	be	an	ultimate	

dopaminergic	input	from	VTA	to	MPFC	leading	to	enhanced	active	coping	(C.	Chen	et	

al.,	2017).	Exercise	may	also	boost	prefrontal	executive	function	such	as	inhibitory	

control,	along	with	a	corresponding	increase	in	LPFC	activation	(Byun	et	al.,	2014)	
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and	in	LPFC	and	MPFC	volume	(Batouli	&	Saba,	2017;	Kramer	&	Erickson,	2007).		

	

5.2.3.	Food	restriction	

	 Another	form	of	physical	challenge	that	can	boost	resilience	is	food	

restriction,	including	caloric	restriction	(reducing	caloric	intake	while	maintaining	

meal	frequency)	and	fasting	(skipping	meals).	Food	restriction	with	adequate	

nutrient	intake	can	slow	down	aging	and	age-related	diseases,	and	improve	mood	

and	cognition	(Longo	&	Mattson,	2014).	From	an	evolutionary	perspective,	the	

physical	and	cognitive	benefits	of	food	restriction	make	sense	because	individuals	

whose	brains	function	well	during	hunger	would	have	a	survival	advantage	(i.e.,	a	

hungry	animal	that	can	successfully	outrun	or	outsmart	its	predator	is	more	likely	to	

survive	and	reproduce).	Caloric	restriction,	typically	implemented	in	the	range	of	

20-40%	decrease	in	daily	intake,	increases	healthy	lifespan	in	a	range	of	species	(C.	

Lee	&	Longo,	2016).	A	number	of	studies	demonstrate	the	benefits	of	caloric	

restriction	and	fasting.	Notably,	a	multi-site	randomized	controlled	trial	found	that	

two	years	of	~10-20%	caloric	restriction	in	non-obese	adults	can	improve	mood,	

sleep,	and	quality	of	life	(Martin	et	al.,	2016),	as	well	as	some	predictors	of	health	

span	and	longevity	(Ravussin	et	al.,	2015).	Interestingly,	no	negative	effects	of	

caloric	restriction	were	found	in	this	study.	Fasting	(e.g.,	for	12-24	hours	2-4	

times/week)	is	emerging	as	an	effective	alternative	to	caloric	restriction,	with	

potentially	better	compliance	(Horne,	Muhlestein,	&	Anderson,	2015).	Although	

well-designed	randomized	controlled	studies	of	fasting	are	limited,	existing	studies	

show	improvements	in	weight	and	other	health	outcomes	(Horne	et	al.,	2015).	Food	



	

Page 50 of 123	

restriction	may	also	facilitate	extinction	of	traumatic	memories	(Shi	et	al.,	2018),	

likely	through	serotonin-dependent	(M.	C.	Riddle	et	al.,	2013)	and	amygdala	(Verma	

et	al.,	2016)	pathways.	Food	restriction	also	affects	mesostriatal	dopamine	

pathways	(Maalouf,	Rho,	&	Mattson,	2009).	In	rhesus	monkeys,	6	months	of	30%	

caloric	restriction	has	neuroprotective	effects	on	midbrain	dopamine	neurons,	likely	

by	increasing	striatal	neurotropic	factors	(Maswood	et	al.,	2004).	Similarly,	fasting	

has	neuroprotective	effects	on	striatal	neurons	in	rats	following	excitotoxic	and	

metabolic	insults	(Bruce�Keller,	Umberger,	McFall,	&	Mattson,	1999;	Marie,	Bralet,	

Gueldry,	&	Bralet,	1990).	Food	restriction	may	also	activate	the	mesostriatal	reward	

pathway	via	orexin,	a	neuropeptide	implicated	in	the	regulation	of	natural	and	drug	

rewards	(G.	C.	Harris	&	Aston-Jones,	2006).	Fasting	activates	orexin	neurons	(Lutter	

et	al.,	2008),	which	heavily	innervate	dopamine-rich	VTA	and	nucleus	accumbens	

structures	(G.	C.	Harris	&	Aston-Jones,	2006),	and	orexin	signaling	has	been	

proposed	as	a	potential	mechanism	underlying	the	antidepressant	effect	of	food	

restriction	(Lutter	et	al.,	2008;	Manchishi,	Cui,	Zou,	Cheng,	&	Li,	2018;	Zhang	et	al.,	

2015).	

	

5.2.4.	Brain-gut	microbiome	

	 Bacteria	in	the	gut	are	important	for	normal	health	and	functioning,	

impacting	lifespan	and	health	span	(Spielman,	Gibson,	&	Klegeris,	2018).	There	is	

bidirectional	signaling	between	the	brain	and	gut	microbiome,	and	the	latter	can	

play	a	role	in	such	brain-related	diseases	as	anxiety,	depression,	and	chronic	pain	

(reviewed	in	Long-Smith	et	al.,	2020;	Mayer,	Knight,	Mazmanian,	Cryan,	&	Tillisch,	
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2014;	Pereira	et	al.,	2020).	For	example,	an	imbalance	in	the	mouse	gut	microbiome	

can	induce	depressive	behavior	like	social	withdrawal	(Buffington	et	al.,	2016;	

Gacias	et	al.,	2016),	a	deficit	that	can	be	passed	on	to	other	mice	by	fecal	transplant	

(Gacias	et	al.,	2016)	or	reversed	by	selectively	adding	Lactobacillus	bacteria	to	their	

drinking	water	(Buffington	et	al.,	2016).	Similarly	in	humans,	altered	gut	microbiota	

has	been	associated	with	depression	and	anxiety	(Jiang	et	al.,	2015;	Luna	&	Foster,	

2015;	Sharon,	Sampson,	Geschwind,	&	Mazmanian,	2016)	and	with	

neurodegenerative	and	metabolic	diseases	(Patterson	et	al.,	2014;	Sharon	et	al.,	

2016;	Spielman	et	al.,	2018).	Importantly,	consumption	of	probiotics,	beneficial	

bacteria,	can	have	antidepressant	and	anxiolytic	effects	(Butler,	Cryan,	&	Dinan,	

2019;	R.	T.	Liu,	Walsh,	&	Sheehan,	2019;	Sarkar	et	al.,	2016)	along	with	physical	

health	benefits	(Long-Smith	et	al.,	2020;	Patterson	et	al.,	2014),	as	can	consumption	

of	prebiotics,	non-digestible	fibers	that	support	probiotics	(Foster,	Rinaman,	&	

Cryan,	2017;	Sarkar	et	al.,	2016).	Nonetheless,	not	all	clinical	trials	have	

demonstrated	beneficial	effects	of	probiotics	(Long-Smith	et	al.,	2020).	Additional	

strain-selection	and	large-scale	longitudinal	studies	are	needed	to	determine	the	

specific	impact	of	any	given	psychobiotic	(Pereira	et	al.,	2020).	

Microbiata	can	have	multitude	and	broad	effects	on	the	brain,	including	the	

fear/stress	and	the	dopaminergic	reward	networks	(Butler	et	al.,	2019;	Luczynski,	

McVey	Neufeld,	et	al.,	2016;	Sarkar	et	al.,	2018;	Sharon	et	al.,	2016).	Several	studies	

have	shown	that	depleting	gut	microbiota	can	increase	HPA	activation,	while	pre-	

and	probiotics	can	reduce	it	(reviewed	in	de	Weerth,	2017;	Foster	et	al.,	2017).	

Microbiome	also	regulate	amygdala	fear-related	function	(Hoban	et	al.,	2018),	as	
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well	as	amygdala	morphology	(Luczynski,	Whelan,	et	al.,	2016)	and	receptors	

(reviewed	in	Sarkar	et	al.,	2018).	Emerging	evidence	also	implicates	the	

dopaminergic	reward	system	in	the	path	from	gut	microbiota	to	resilience.	In	mice,	

depletion	of	gut	microbiota	via	antibiotics	leads	to	anhedonia-like	deficits	in	reward	

responding,	along	with	abnormal	microglia	growth	in	the	VTA	(K.	Lee	et	al.,	2018),	

while	treatment	with	Lactobacillus	bacteria	reduces	anxiety-	and	depression-like	

behavior	as	it	increases	prefrontal	(Wei	et	al.,	2019)	and	striatal	(Huang	et	al.,	2018)	

dopamine.	In	humans,	gut	microbiota	imbalance	has	been	associated	with	elevated	

levels	of	an	enzyme	directly	involved	in	the	production	of	the	dopamine	precursor	

phenylalanine,	along	with	abnormal	reward	anticipation	response	in	the	ventral	

striatum	(Aarts	et	al.,	2017).	Additionally,	fecal	microbiota-derived	tryptophan	

metabolites	positively	correlate	with	functional	and	anatomical	connectivity	of	the	

reward	network,	including	amygdala	and	nucleus	accumbens	(Osadchiy	et	al.,	

2018).	Together	these	findings	link	gut	microbiota	with	mental	health	and	changes	

in	the	distress	and	reward	networks.	

	

5.3.	Social	strategies	(social	connectedness)	

	 	

5.3.1.	Receiving	social	validation	and	support		

	 Decades	of	research	have	demonstrated	that	social	relationships	can	

positively	impact	mental	and	physical	health	(House,	Landis,	&	Umberson,	1988),	

and	recent	large-scale	epidemiological	findings	corroborate	this	effect	(Buettner,	

2012).	Compared to social isolation, social integration (having social connections) 
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and social support (feeling loved and cared for) have consistently been associated 

with lower mortality and morbidity, including lower risks of depression and PTSD 

(Holt-Lunstad, Smith, & Layton, 2010; Thoits, 2011; Uchino, 2006). Positive 

social connectedness can benefit health and resilience via multiple different routes, 

such as increasing feelings of belonging and self-efficacy (Southwick et al., 2005; 

Thoits, 2011) and promoting subjective well-being through social contagion 

(Fowler & Christakis, 2008). Indeed, some researchers have suggested that even 

having a happy spouse may enhance health beyond the contribution of one’s own 

happiness to health (Chopik & O'Brien, 2017). 

 Social integration and support activate reward circuitry and can buffer 

stress. Social	interaction	in	rodents	activates	VTA	stimulation	of	NAS	neurons	

(Gunaydin	et	al.,	2014)	and	dampens	HPA	response	(reviewed	in	DeVries,	Craft,	

Glasper,	Neigh,	&	Alexander,	2007;	Kiyokawa	&	Hennessy,	2018).	In	humans,	

viewing	pictures	of	a	supportive	partner	during	the	experience	of	physical	or	social	

pain	reduces	self-reported	pain	and	activation	in	the	brain’s	pain	network,	as	it	

increases	activation	in	MPFC	(reviewed	in	Eisenberger,	2013).	Simply	viewing	

pictures	of	a	supportive	partner	activates	reward-related	regions	like	the	ventral	

striatum	(Singer,	Kiebel,	Winston,	Dolan,	&	Frith,	2004),	as	does	receiving	social	

validation	(reviewed	in	Tabibnia	&	Lieberman,	2007),	such	as	feeling	understood	by	

peers	(Morelli,	Torre,	&	Eisenberger,	2014)	and	being	treated	with	fairness	

(Tabibnia,	Satpute,	&	Lieberman,	2008).		

	 A	pathway	for	the	rewarding	and	stress-buffering	effects	of	social	connection	
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is	through	oxytocin,	a	neurohormone	that	promotes	social	attachment	and	prosocial	

behavior,	stimulates	the	mesostriatal	reward	pathway,	and	attenuates	stress-related	

neuroendocrine	and	rACC	responses	(reviewed	in	Meyer-Lindenberg,	Domes,	

Kirsch,	&	Heinrichs,	2011;	Shamay-Tsoory	&	Abu-Akel,	2016;	Skuse	&	Gallagher,	

2009).	Oxytocin	action	in	the	nucleus	accumbens	and	VTA	of	rodents	is	critical	for	

pair	bonding	and	positive	social	interaction	(Dolen,	Darvishzadeh,	Huang,	&	

Malenka,	2013;	Hung	et	al.,	2017;	L.	J.	Young	&	Wang,	2004).	Receiving	a	dose	of	

oxytocin	enhances	the	stress-buffering	effect	of	social	support	on	stress,	such	as	

decreasing	blood	pressure,	pain	sensitivity,	and	stress	hormone	levels	(Heinrichs,	

Baumgartner,	Kirschbaum,	&	Ehlert,	2003).	Oxytocin	release	can	be	stimulated	by	

trust,	as	well	as	by	physical	touch	(Morhenn,	Beavin,	&	Zak,	2012),	important	

components	of	social	connectedness	and	support.	Being	physically	touched	can	be	

sufficient	to	reduce	threat-related	activity	in	the	pain	network,	including	anterior	

insula	and	rACC	(Coan,	Schaefer,	&	Davidson,	2006).	In	short,	physical	or	

psychological	social	connection	can	stimulate	oxytocin	release,	which	in	turn	can	

stimulate	the	mesostriatal	reward	pathway	and	attenuate	stress-related	response	in	

the	brain.		

	

5.3.2.	Giving	social	validation	and	support	

	 Not	only	does	receiving	social	validation	and	social	support	promote	

resilience,	so	do	giving	social	support	and	being	prosocial	(Eisenberger,	2013;	

Inagaki	et	al.,	2016).	Supporting	others	during	times	of	stress,	such	as	volunteering	

during	war	or	caregiving	after	the	loss	of	a	spouse,	are	consistently	associated	with	
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adaptive	outcomes,	including	greater	longevity,	psychological	well-being,	and	

physical	health	(S.	L.	Brown,	Brown,	House,	&	Smith,	2008;	Curry	et	al.,	2018;	Post,	

2005;	Rachman,	1979;	Southwick	et	al.,	2005;	cf	Whillans	et	al.,	2017).	In	mice,	

stimulation	of	oxytocin	neurons	or	their	terminals	in	the	VTA	increases	prosocial	

behavior	(Hung	et	al.,	2017).	In	a	human	neuroimaging	study	of	support	giving,	

holding	the	arm	of	a	partner	who	is	experiencing	physical	pain	activates	the	support	

giver’s	ventral	striatum	and	septal	area,	a	region	implicated	in	fear	attenuation,	and	

those	who	show	greater	activity	in	the	septal	area	show	reduced	bilateral	amygdala	

activity	during	support	giving	(Inagaki	&	Eisenberger,	2012).	Giving	social	support	

also	reduces	sympathetic	response	to	stress	(Inagaki	&	Eisenberger,	2016).	

Generosity,	such	as	spending	money	on	others,	also	enhances	subjective	well-being	

(E.	W.	Dunn,	Aknin,	&	Norton,	2008)	and	increases	activation	in	the	brain’s	reward	

pathways,	including	MPFC	and	ventral	striatum	(reviewed	in	Cutler	&	Campbell-

Meiklejohn,	2019;	Hubbard,	Harbaugh,	Srivastava,	Degras,	&	Mayr,	2016).	Similar	

reward-related	activation	is	observed	when	giving	social	validation,	such	as	when	

treating	others	fairly	(Zaki	&	Mitchell,	2011)	or	cooperatively	(Decety,	Jackson,	

Sommerville,	Chaminade,	&	Meltzoff,	2004).	

	 5.3.2.1.	Compassion.	A	special	type	of	social	support	is	compassion.	In	

contrast	to	empathy,	which	refers	to	the	vicarious	experience	of	another’s	suffering,	

compassion	refers	to	the	feeling	of	warmth	and	care	for	the	other’s	suffering,	a	

feeling	that	motivates	a	desire	to	help	(Goetz,	Keltner,	&	Simon-Thomas,	2010;	

Singer	&	Klimecki,	2014).	Compassion	training	can	help	build	resilience	resources,	

including	decreased	illness	symptoms	and	increased	social	support	(Fredrickson,	
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Cohn,	Coffey,	Pek,	&	Finkel,	2008),	and	be	a	useful	tool	for	targeting	such	mental	

health	problems	as	depression	and	anxiety	(Hofmann,	Grossman,	&	Hinton,	2011).	

Trait	compassion	(Cosley,	McCoy,	Saslow,	&	Epel,	2010),	as	well	as	compassion	

training	(Engert,	Kok,	Papassotiriou,	Chrousos,	&	Singer,	2017;	Hofmann	et	al.,	

2011),	can	have	buffering	effects	on	the	neuroendocrine	response	to	social	stress.	

While	reducing	negative	affect	(Hofmann	et	al.,	2011),	compassion	training	can	also	

boost	positive	affect	(Fredrickson	et	al.,	2008;	Hofmann	et	al.,	2011;	Klimecki,	

Leiberg,	Ricard,	&	Singer,	2014)	and	increase	activation	in	reward-related	regions,	

including	ventral	striatum	and	MPFC	(Klimecki	et	al.,	2014;	Preckel,	Kanske,	&	

Singer,	2018;	Weng	et	al.,	2013).	Similarly,	responding	to	another’s	suffering	with	

compassion	can	boost	positive	affect	(Engen	&	Singer,	2015)	and	activate	these	

reward-related	regions	(Engen	&	Singer,	2015;	J.	W.	Kim	et	al.,	2009;	for	gender	

differences,	see	Mercadillo,	Diaz,	Pasaye,	&	Barrios,	2011).		

	 5.3.2.2.	Gratitude.	Expressing	gratitude	can	boost	psychological	and	physical	

well-being	(Hill,	Allemand,	&	Roberts,	2013;	Seligman	et	al.,	2005).	Effective	

gratitude	strategies	include	expressing	gratitude	to	another	person	(e.g.,	by	writing	

a	gratitude	letter)	or	privately	to	oneself	(e.g.,	by	journaling	about	one’s	fortunes	in	

a	diary)	(Kaczmarek	et	al.,	2015).	For	example,	in	a	2-week	intervention	study	of	

adults	waiting	to	receive	psychological	treatment,	daily	journaling	of	things	they	

were	grateful	for	reduced	anxiety	and	increased	optimism	and	life-satisfaction,	as	

did	daily	journaling	of	the	kind	acts	they	had	committed	(S.	L.	Kerr,	O’Donovan,	&	

Pepping,	2015).	Similarly,	in	a	randomized	controlled	study,	psychotherapy	clients	

who	wrote	gratitude	letters	to	others	reported	better	mental	health	4	and	12	weeks	
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after	therapy	than	clients	who	did	expressive	writing	or	therapy-only	clients	(Wong	

et	al.,	2018).	Multiple	neuroimaging	studies	have	associated	gratitude	with	MPFC	

function,	along	with	other	regions	in	the	mesostriatal	reward	pathway.	A	5-minute	

gratitude	exercise	can	decrease	autonomic	arousal,	and	this	measure	correlates	with	

functional	connectivity	of	reward	regions,	including	MPFC,	ventral	striatum,	and	

amygdala	(Kyeong,	Kim,	Kim,	Kim,	&	Kim,	2017).	Self-reported	gratitude	correlates	

with	MPFC	activation	during	the	experience	of	gratitude	(Yu,	Gao,	Zhou,	&	Zhou,	

2018),	as	well	as	with	activation	in	ventral	striatum	and	MPFC	during	charitable	

giving	(Karns,	Moore,	&	Mayr,	2017),	and	gratitude	journaling	increases	this	MPFC	

response	(Karns	et	al.,	2017).	Gratitude	exercise	can	also	have	lasting	effects	on	

MPFC.	A	one-hour	gratitude	letter	writing	exercise	increased	generosity	and	

increased	activity	in	MPFC	during	charitable	giving	3	months	later	(Kini,	Wong,	

McInnis,	Gabana,	&	Brown,	2016).	Consistent	with	the	notion	that	gratitude	is	

socially	rewarding	(G.	R.	Fox,	Kaplan,	Damasio,	&	Damasio,	2015),	another	fMRI	

study	has	shown	that	summoning	feelings	of	gratitude	activates	the	basal	forebrain	

(Zahn	et	al.,	2009),	a	region	that	is	critical	for	maternal	caregiving	in	rodents	and	

includes	important	components	of	the	mesostriatal	pathway,	such	as	the	ventral	

striatum	and	VTA.		

	

5.4.	Summary	of	strategies	that	up-regulate	the	positive	

	

All	the	strategies	reviewed	in	this	section	show	evidence	of	activating	some	

aspect	of	the	reward	networks,	typically	including	the	ventral	striatum	and	MPFC.	
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Most	of	these	strategies	also	impact	some	aspect	of	the	distress	pathways,	such	as	

giving	social	support,	which	reduces	autonomic	arousal,	and	positive	reminiscence,	

sleep,	and	receiving	social	support,	which	reduce	HPA	stress	response	(Table	1).	

	

	

6.	Transcending	the	Self	

	

	 Recent	findings	suggest	that	another	way	to	enhance	resilience	and	well-

being	is	by	transcending	the	self,	disengaging	from	the	default	self-focused	mind	

wandering	and	instead	engaging	in	the	present	moment,	such	as	by	practicing	

mindfulness	or	by	losing	oneself	to	activities	or	experiences	that	are	personally	

meaningful	(Yaden,	Haidt,	Hood,	Vago,	&	Newberg,	2017).	Empirical	research	has	

consistently	shown	that	having	a	sense	of	meaning	in	life	is	bedrock	of	human	well-

being	(Reker,	Peacock,	&	Wong,	1987;	Ryff	&	Singer,	1998;	Zika	&	Chamberlain,	

1992).	Meaning	can	emerge	in	many	different	ways,	including	having	a	purpose,	

religious	faith,	or	engagement	with	nature.	While	the	neural	pathway	from	these	

various	strategies	to	resilience	is	diverse	and	complex,	they	share	the	common	

feature	of	interfering	with	the	DMN	and	facilitating	a	feeling	of	transcending	the	self,	

losing	oneself	to	something	larger,	or	a	sense	of	union	with	the	universe	or	greater	

entity.		

	 	

6.1.	Mindfulness	
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	 A	well-examined	strategy	that	promotes	self-transcendence	and	resilience	is	

mindfulness	(reviewed	in	Holzel	et	al.,	2011;	Lin,	Callahan,	&	Moser,	2018;	Vago	&	

Silbersweig,	2012),	a	process	of	purposefully	and	nonjudgmentally	paying	attention	

to	the	present	moment	(Kabat-Zinn,	2003),	resulting	in	reduction	in	the	mostly	

maladaptive	mind-wandering	about	self-focused	matters	of	the	past	and	future	

(Mrazek,	Franklin,	Phillips,	Baird,	&	Schooler,	2013).	Mindfulness	practice,	even	

brief	daily	practice	(Basso,	McHale,	Ende,	Oberlin,	&	Suzuki,	2019),	can	buffer	stress	

and	thus	ameliorate	stress-related	conditions,	including	depression,	anxiety,	

inflammation,	and	drug	abuse	(Creswell	&	Lindsay,	2014;	Wielgosz,	Goldberg,	Kral,	

Dunne,	&	Davidson,	2019),	and	it	can	improve	executive	function,	subjective	well-

being,	and	relationship	quality	(Creswell,	2017).	Although	mindfulness	intervention	

is	not	always	beneficial	(Reynolds,	Bissett,	Porter,	&	Consedine,	2017;	Van	Dam	et	

al.,	2017;	Wielgosz	et	al.,	2019),	it	has	demonstrated	efficacy	as	a	treatment	tool	for	

certain	psychiatric	diseases,	including	depression	and	addiction	(Goldberg	et	al.,	

2018).	Neural	plasticity	associated	with	mindfulness	training	includes	structural	

and	functional	changes	in	PFC-amygdala	emotion-regulation	circuitry	(Guendelman,	

Medeiros,	&	Rampes,	2017;	Y.	Y.	Tang,	Holzel,	&	Posner,	2015),	such	as	stronger	

MPFC-amygdala	coupling	and	reduced	amygdala	reactivity	(Kral	et	al.,	2018),	

structural	and	functional	changes	in	LPFC	and	ACC	associated	with	executive	tasks	

(K.	C.	Fox	et	al.,	2016;	Holzel	et	al.,	2011;	Y.	Y.	Tang	et	al.,	2015),	and	reduced	

activation	of	DMN	(Brewer	et	al.,	2011;	K.	C.	Fox	et	al.,	2016;	Guendelman	et	al.,	

2017;	Y.	Y.	Tang	et	al.,	2015).	Given	that	each	of	these	mindfulness-related	

psychological,	social,	and	neural	changes	alone	can	boost	resilience,	mindfulness	
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may	have	a	unique	potential	to	boost	resilience	through	multiple	routes.	

	 	

6.2.	Purpose	in	life,	religion,	and	spirituality	

	

	 Having	a	sense	of	meaning	or	purpose	in	life,	such	as	striving	to	achieve	

valued	goals,	has	traditionally	been	deemed	an	integral	part	of	psychological	well-

being	(Reker	et	al.,	1987;	Zika	&	Chamberlain,	1992),	particularly	when	feeling	

competent	about	attaining	the	goals	(Ryan	&	Deci,	2001).	For	many	people,	meaning	

in	life	can	be	obtained	by	affiliating	with	a	larger	framework	of	beliefs	or	practices,	

such	as	a	religion	or	philosophy	of	life	(Inzlicht,	Tullett,	&	Good,	2011;	Southwick	et	

al.,	2005).	According	to	various	polls,	religiously	committed	or	religiously	active	

people	tend	to	rate	themselves	as	happier	(Myers,	2000).	Furthermore,	having	a	

sense	of	purpose,	such	as	through	spiritual	faith	or	religious	activities,	may	be	

protective	against	physical	and	psychological	illness	and	aid	coping	with	illness	

(Alim	et	al.,	2008;	Cheadle	&	Dunkel	Schetter,	2017;	Southwick	et	al.,	2005).	

Demonstrating	a	causal	connection,	several	studies	have	shown	that	inducing	a	

sense	of	self-transcendence,	spiritual	orientation,	and	increased	purpose	in	life,	by	

administration	of	psychedelic	drugs	such	as	psilocybin	(found	in	“magic	

mushrooms”)	and	ayahuasca	(used	in	religious	ceremonies	by	some	indigenous	

peoples	in	the	Americas),	can	improve	mental	health	(reviewed	in	Bouso,	Dos	

Santos,	Alcazar-Corcoles,	&	Hallak,	2018;	Nunes	et	al.,	2016).	For	example,	clinical	

trials	have	shown	that	a	single	dose	of	psilocybin	can	produce	large	and	sustained	

decreases	in	depression	and	anxiety	symptoms,	an	effect	mediated	by	psilocybin-
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induced	mystical	experience	(Griffiths	et	al.,	2016;	Ross	et	al.,	2016).		

	 Having	purpose	in	life	(Van	Reekum	et	al.,	2007)	and	prioritizing	self-

transcendent	values	(Kang	et	al.,	2017)	are	associated	with	reduced	distress	

response	in	brain	regions	such	as	the	amygdala.	Similarly,	religious	conviction	is	

associated	with	reduced	distress-related	reactivity	in	dACC	(Inzlicht	et	al.,	2011).	

The	brain’s	reward	network	may	also	play	a	role	in	the	salutatory	effects	of	having	a	

sense	of	purpose.	In	an	fMRI	study,	people	who	showed	sustained	striatal	activity	to	

positive	events,	had	lower	cortisol	output,	and	reported	having	a	greater	sense	of	

purpose,	meaning,	and	engagement	with	life	(Heller	et	al.,	2013).	In	addition	to	the	

distress	and	reward	networks,	the	DMN	also	plays	a	role	in	religiosity	and	having	

purpose	in	life.	When	the	DMN	was	first	described,	it	was	characterized	as	a	

network	of	regions	that	consistently	show	decreased	activation	from	baseline	

during	a	wide	range	of	“goal-directed”	behaviors	(Raichle	et	al.,	2001).	Numerous	

studies	have	since	demonstrated	an	“anti-correlated”	relationship	between	the	DMN	

and	the	executive	network	supporting	goal	pursuit,	including	causal	evidence	that	

the	executive	network	can	negatively	regulate	the	DMN	(A.	C.	Chen	et	al.,	2013;	

Uddin,	Kelly,	Biswal,	Xavier	Castellanos,	&	Milham,	2009).	Thus,	at	a	basic	level,	

pursuing	a	goal	or	a	purpose	by	itself	can	result	in	reduced	DMN	activity.	

Religiousness	and	spirituality	are	also	linked	with	reduced	DMN	function.	For	

example,	the	typical	MPFC	activation	observed	during	self-referential	thinking	is	not	

observed	in	Tibetan	Buddhists,	who	follow	the	doctrine	anatta	(“no-self”),	denying	

oneself	(Wu	et	al.,	2010).	Similarly,	when	DMN	function	is	disrupted,	for	example	by	

surgical	selective	lesion	(Urgesi,	Aglioti,	Skrap,	&	Fabbro,	2010)	or	magnetically	
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induced	temporary	“lesion”	(Crescentini,	Aglioti,	Fabbro,	&	Urgesi,	2014)	of	a	

component	of	DMN	called	the	temporoparietal	junction,	self-reported	self-

transcendence	and	implicit	religiousness/spirituality	increase.	Conversely,	when	

this	region	is	temporarily	excited	by	magnetic	stimulation,	implicit	

religiousness/spirituality	decreases	(Crescentini,	Di	Bucchianico,	Fabbro,	&	Urgesi,	

2015).	Importantly,	when	a	personally	meaningful	spiritual	experience	or	a	sense	of	

religious	ecstasy	is	experimentally	elicited	by	an	individualized	guided-imagery	task	

(L.	Miller	et	al.,	2019)	or	by	psychedelic	drugs,	such	as	psilocybin	(Carhart-Harris	et	

al.,	2012),	ayahuasca	(Palhano-Fontes	et	al.,	2015),	or	lysergic	acid	diethylamide	

(LSD)	(Carhart-Harris	et	al.,	2016),	activity	in	and	functional	connectivity	within	

DMN	are	reduced.		

	 	

6.3.	Exposure	to	nature		

	

	 Another	emerging	contributor	to	resilience	is	exposure	to	nature,	including	

such	practices	as	“forest	bathing”	and	garden	therapy	that	have	gained	increased	

academic	and	popular	attention	in	the	last	two	decades	(Annerstedt	&	Wahrborg,	

2011;	Hartig,	Mitchell,	de	Vries,	&	Frumkin,	2014).	Exposure	to	nature	can	improve	

cognitive	function	(Keniger,	Gaston,	Irvine,	&	Fuller,	2013)	and	have	health	benefits	

(for	review	see	Hartig	et	al.,	2014),	such	as	lower	blood	pressure	and	cortisol	

(Haluza,	Schonbauer,	&	Cervinka,	2014;	Keniger	et	al.,	2013),	lower	inflammatory	

cytokines	and	enhanced	immune	function	(Haluza	et	al.,	2014;	Kuo,	2015),	

improved	autonomic	stress	recovery	(D.	K.	Brown,	Barton,	&	Gladwell,	2013),	and	
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improved	circadian	function	(Stothard	et	al.,	2017).	Although	the	path	from	nature	

exposure	to	psychological	and	physiological	health	is	complex,	it	includes	respite	

from	life	stressors	and	urban	pollutants	(Hartig	et	al.,	2014;	Tost,	Champagne,	&	

Meyer-Lindenberg,	2015),	as	well	as	transcendence	of	self	(Williams	&	Harvey,	

2001).	While	urban	pollutants	can	have	numerous	effects	on	the	brain	and	well-

being	(van	den	Bosch	&	Meyer-Lindenberg,	2019),	here	I	review	the	effect	of	nature	

on	reducing	activation	in	the	DMN.	In	general,	even	brief	exposure	to	nature,	such	as	

15	minutes	of	sitting	in	a	forest,	can	decrease	activity	in	PFC	and	PCC,	and	reduce	

subjective	negative	affect	and	amygdala	activation	(reviewed	in	Norwood	et	al.,	

2019).	In	a	correlational	study,	rural	versus	urban	upbringing	was	specifically	

associated	with	lower	stress	reactivity	in	MPFC	only,	while	current	city	living	was	

specifically	associated	with	greater	stress	reactivity	in	amygdala	only	(Lederbogen	

et	al.,	2011).	Importantly,	a	randomly-assigned	90-minute	walk	in	a	natural,	but	not	

urban,	setting	reduced	self-reported	rumination	and	MPFC	activity	(Bratman,	

Hamilton,	Hahn,	Daily,	&	Gross,	2015).	

	 	

6.4.	Flow	

	

	 Another	way	to	lose	oneself	is	through	the	experience	of	flow,	a	state	of	deep	

engagement	in	a	challenging	activity	that	requires	high	level	of	skill,	such	as	playing	

a	sport,	a	musical	instrument,	or	chess	(Csikszentmihalyi,	1999).	The	state	of	flow	

requires	concentration,	perseverance,	and	skill	that	matches	the	challenge;	if	the	

task	is	too	challenging,	it	can	lead	to	anxiety,	and	if	the	task	is	too	easy,	it	can	lead	to	
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boredom.	When	perceived	challenges	and	skills	are	both	high	and	in	balance,	a	state	

of	optimal	experience	arises	and	subjective	well-being	increases	(Csikszentmihalyi	

&	LeFevre,	1989).	Consistent	with	this	framework,	flow	can	reduce	negative	affect	

and	boost	positive	affect	(Rankin,	Walsh,	&	Sweeny,	2018),	as	well	as	increase	the	

relaxing	activity	of	the	parasympathetic	nervous	system	(Knierim,	Rissler,	Dorner,	

Maedche,	&	Weinhardt,	2018).	Similarly,	individuals	who	experience	flow	more	

frequently	report	lower	depressive	symptoms	and	emotional	exhaustion,	even	after	

controlling	for	genetic	and	familial	factors	(Mosing,	Butkovic,	&	Ullen,	2018).	There	

is	also	evidence	of	high	subjective	well-being	among	individuals	who	regularly	

experience	flow,	including	advanced	musicians	(Ascenso,	Williamon,	&	Perkins,	

2016;	Fritz	&	Avsec,	2007),	elite	athletes	(Gould,	Dieffenbach,	&	Moffett,	2010;	

Jackson,	Ford,	Kimiecik,	&	Marsh,	1998),	and	full-time	employees	who	experience	

flow	in	their	jobs	(Ilies	et	al.,	2017).	In	fact,	the	field	of	occupational	therapy	may	

have	been	born	out	of	observations	that	being	“occupied”	by	activities	like	the	arts	

reduces	stress	and	enhances	well-being,	and	may	be	viewed	as	an	early	form	of	

“flow	therapy”	(Sadlo,	2016).		

	 A	nascent	and	growing	literature	on	the	neural	basis	of	flow	suggests	that	

being	in	a	state	of	flow	can	reduce	activation	in	the	DMN	and	the	amygdala	and	

possibly	activate	the	reward	pathway.	Consistent	with	the	idea	of	experts	

experiencing	flow	and	self-transcendence	during	engagement	in	the	expert	task,	

grandmaster	and	master	chess	players	showed	lower	DMN	activity	during	a	chess	

problem-solving	task	than	novice	players	(Duan	et	al.,	2012).	Similarly,	across	two	

separate	fMRI	studies,	when	difficulty	of	an	arithmetic	task	was	continuously	
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adjusted	to	each	participant’s	skill	level,	being	in	a	state	of	flow	compared	to	

boredom	and	overload,	as	confirmed	by	self-report,	decreased	activation	in	the	

amygdala	and	DMN,	including	MPFC	and	PCC,	along	with	increased	activation	in	the	

attention	network	(Ulrich,	Keller,	&	Gron,	2016;	Ulrich,	Keller,	Hoenig,	Waller,	&	

Gron,	2014)	and	striatum	(Ulrich	et	al.,	2014).	In	another	fMRI	study,	using	a	

naturalistic	video	game,	balance	between	game	difficulty	and	the	player’s	ability	

resulted	in	greater	self-reported	intrinsic	reward	and	activation	in	the	striatum,	

compared	to	when	game	difficulty	was	too	high	or	too	low,	and	in	lower	DMN	

activation	compared	to	when	game	difficulty	was	too	low	(Huskey,	Craighead,	

Miller,	&	Weber,	2018).	Consistent	with	the	potential	role	of	the	reward	pathway	in	

flow,	self-reported	flow-proneness	is	correlated	with	dopamine	D2	receptor	

availability	in	the	striatum	(de	Manzano	et	al.,	2013)	and	with	a	dopamine	D2	

receptor	gene	polymorphism	(Gyurkovics	et	al.,	2016).		 	

	

6.5.	Summary	of	strategies	that	promote	transcending	the	self	

	

	 The	four	strategies	reviewed	in	this	section	all	reduce	activity	in	the	DMN.	

They	each	also	impact	some	aspect	of	the	distress	networks.	Two	of	the	strategies,	

specifically	purpose	in	life	and	flow,	are	also	associated	with	activation	in	the	

striatum,	a	reward-related	region	(Table	1).	

	

	

7.	Future	Directions:	Predictions	and	Implications	of	the	Tripartite	Model	
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	 The	tripartite	model	makes	several	predictions	and	is	therefore	testable.	

First,	the	model	predicts	that	manipulating	distress,	reward,	or	default	mode	

networks	will	impact	resilience.	As	reviewed	below,	predictions	of	this	kind	are	

testable	with	experimental	studies,	which	are	important	for	understanding	the	

causal	mechanisms	of	building	resilience	and	for	testing	efficacy	of	new	

interventions.	The	tripartite	model	also	hypothesizes	that	individual	differences	in	

baseline	activation	of	these	networks	may	predict	stress	resilience	and	intervention	

outcomes.	These	types	of	hypotheses	are	addressed	with	prediction	(e.g.,	

prospective	longitudinal)	studies,	which	can	help	identify	processes	underlying	

resilience	and	potentially	lead	to	individualized	intervention.	Here,	I	review	each	of	

these	types	of	investigations,	including	their	potential	implications.	Finally,	I	suggest	

additional	future	directions	that	can	help	test	and	expand	the	model.	

	

7.1.	Experimental	Approaches	

	

	 If	the	tripartite	model	is	valid,	then	any	intervention	that	(moderately)	

stimulates	the	reward	network	or	reduces	over-activation	in	the	default	mode	or	

distress	networks	should	boost	resilience.	This	framework	of	resilience-building	can	

help	lead	to	novel	or	largely	ignored	strategies.	In	particular,	the	tripartite	model	

makes	two	unique	types	of	predictions	that	could	lead	to	novel	and	potentially	more	

effective	approaches	to	resilience-building.	First,	the	model	formally	recognizes	and	

predicts	efficacy	of	strategies	that	can	transiently	reduce	DMN	activity	and	induce	a	
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sense	of	self-transcendence.	Specifically,	as	outlined	below,	if	the	tripartite	model	is	

correct	in	that	reducing	DMN	activity	boosts	resilience,	then	awe	and	hypnotic	state,	

experiences	that	reduce	DMN	activity,	should	each	improve	health	outcomes.	Second,	

the	model	predicts	that	interventions	that	activate	more	than	one	pathway	to	

resilience	would	be	particularly	effective,	likely	in	an	additive	fashion	(Tabibnia	&	

Radecki,	2018).	Here	I	introduce	some	strategies	that	can	test	these	predictions.	

	

7.1.1.	Awe	

	 A	subjective	state	that	has	received	recent	attention	is	awe,	the	feeling	of	

wonder	experienced	when	facing	something	greater	than	the	self	and	beyond	

current	understanding,	such	as	witnessing	a	panoramic	view	of	nature,	childbirth,	or	

a	magnificent	work	of	art	(Keltner	&	Haidt,	2003).	Consistent	with	the	notion	that	

awe	can	help	dissolve	awareness	of	the	self,	viewing	photographs	or	videos	of	

nature	that	are	rated	as	most	“sublime”	or	awe-inducing	reduces	activation	in	DMN	

regions	including	PCC	and	MPFC	(Ishizu	&	Zeki,	2014;	van	Elk,	Arciniegas	Gomez,	

van	der	Zwaag,	van	Schie,	&	Sauter,	2019).	Further	supporting	a	role	of	DMN	in	awe,	

self-reported	dispositional	awe	is	inversely	correlated	with	gray	matter	in	three	

cortical	regions,	all	within	the	DMN,	namely	MPFC,	PCC,	and	temporo-parietal	

junction	(Guan,	Xiang,	Chen,	Wang,	&	Chen,	2018).	There	is	some	preliminary	

evidence	in	support	of	the	resilience-boosting	potential	of	awe.	Experimentally	

inducing	awe,	for	example	by	asking	participants	to	imagine	or	experience	an	

inspiring	scene	(e.g.,	the	view	of	Paris	from	above	or	the	view	of	towering	trees	from	

below),	increases	subjective	well-being	and	prosocial	behavior	(Anderson,	Monroy,	
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&	Keltner,	2018;	Piff,	Dietze,	Feinberg,	Stancato,	&	Keltner,	2015;	Rudd,	Vohs,	&	

Aaker,	2012).	Additionally,	dispositional	awe	has	been	associated	with	lower	pro-

inflammatory	cytokines	(Stellar	et	al.,	2015).	However,	randomized	controlled	

studies,	particularly	those	that	control	for	nature	exposure,	are	needed	to	confirm	

the	causal	effect	of	awe	on	long-term	mental	or	physical	health	outcomes.		

	

7.1.2.	Hypnotic	state	

	 Another	mental	state	associated	with	decreased	DMN	activity	is	the	hypnotic	

state.	Hypnosis	has	been	defined	as	”a	state	of	consciousness	involving	focused	

attention	and	…	enhanced	capacity	for	response	to	suggestion”	(Elkins,	Barabasz,	

Council,	&	Spiegel,	2015).	Hypnotic	induction	typically	involves	instructions	to	relax	

and	focus	attention	on	the	present	moment,	resulting	in	mental	absorption,	reduced	

mind-wandering,	and	an	altered	sense	of	self	(Kihlstrom,	2018),	states	that	can	be	

likened	to	mindfulness	and	flow.	As	such,	despite	inconsistencies	in	methodology	

and	results	of	neuroimaging	studies	of	hypnosis,	a	recent	narrative	review	(Landry,	

Lifshitz,	&	Raz,	2017)	and	empirical	study	(Y.	Liu	et	al.,	2018)	indicate	mounting	

evidence	associating	the	hypnotic	state	with	decreased	DMN	activation.	Numerous	

randomized	controlled	studies	have	demonstrated	high	efficacy	of	hypnotherapy	in	

treatment	of	specific	disorders,	including	functional	gastrointestinal	disorders	

(reviewed	in	Vasant	&	Whorwell,	2019),	physical	pain	(reviewed	in	Thompson	et	al.,	

2019),	and	nicotine	dependence	(reviewed	in	Barnes,	McRobbie,	Dong,	Walker,	&	

Hartmann�Boyce,	2019).	However,	according	to	the	tripartite	model,	experiencing	

“neutral	hypnosis”	alone	(i.e.,	simply	being	in	a	state	of	hypnosis,	even	without	
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specific	suggestions	to	alter	experience	or	behavior)	should	itself	boost	resilience	in	

a	wide	range	of	contexts.	While	the	notion	that	hypnotic	induction	alone	may	have	

much	impact	on	intervention	outcome	has	been	questioned	(e.g.,	Kihlstrom,	2018),	

improved	subjective	affect	can	in	fact	follow	hypnotic	induction	(Laborde,	Heuer,	&	

Mosley,	2018).	Nonetheless,	well-controlled	experiments	are	needed	to	test	the	

hypothesis	that	neutral	hypnosis	can	be	leveraged	to	help	boost	mental	or	physical	

health	outcomes.	

	

7.1.3.	Adding	self-transcendence	to	other	strategies	

	 Another	prediction	of	the	tripartite	model	is	that	incorporating	self-

transcendence	into	another	strategy	would	render	that	strategy	more	effective.	Self-

distancing	and	self-affirmation	are	two	examples	that	can	support	this	prediction.	

Part	of	the	reason	self-distancing	is	a	particularly	effective	reappraisal	strategy	

(Webb	et	al.,	2012)	may	be	that	the	use	of	third-person	and	second-person	

appraisals	not	only	help	change	the	interpretation	of	a	negative	experience	but	that	

they	do	so	by	normalizing	the	experience	beyond	the	self	and	facilitating	meaning-

making	(Orvell,	Kross,	&	Gelman,	2017).	Consistent	with	this	self-transcendent	

effect	of	distancing,	third-person	self-talk	during	distancing	reduces	activity	in	a	

part	of	the	DMN	associated	with	self-reflection,	namely	MPFC	(Moser	et	al.,	2017).	

Self-transcendence	can	also	be	incorporated	into	self-affirmation	to	boost	its	effect.	

For	example,	affirming	self-transcendent	values	(e.g.,	“contributing	to	something	

larger	than	oneself	“)	is	more	effective	in	buffering	the	negative	consequences	of	

social	exclusion	than	affirming	self-enhancing	values	(e.g.,	“appearing	
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intelligent/competent”)	(Burson,	Crocker,	&	Mischkowski,	2012).	Consistent	with	

this	finding,	neural	response	to	prosocial	relative	to	selfish	rewards	is	more	

predictive	of	longitudinal	mental	health	outcomes	(Telzer,	Fuligni,	Lieberman,	&	

Galvan,	2014).	Future	studies	can	investigate	the	added	benefit	of	incorporating	

self-transcendence	into	other	strategies,	such	as	recalling	positive	memories	(i.e.,	of	

self-transcendent	experiences)	and	physical	exercise	(that	is	done	outdoors	or	that	

induces	flow).	

	 	

7.1.4.	Recruiting	multiple	pathways		

	 Just	as	risk	factors	tend	to	contribute	to	vulnerability	in	an	additive	manner,	

so	too	resilience	factors	likely	contribute	to	resilience	in	an	additive	manner	

(Southwick	&	Charney,	2012;	Tabibnia	&	Radecki,	2018).	Accordingly,	a	strategy	

that	recruits	more	than	one	pathway	would	be	expected	to	be	more	effective	than	a	

comparable	strategy	that	recruits	only	one.	For	example,	the	tripartite	model	

predicts	that	a	particularly	effective	strategy	would	be	participating	in	team	sports,	

because	it	would	activate	not	only	the	reward	pathway	through	exercise,	social	

connectedness,	and	self-efficacy,	but	also	the	distress-reduction	pathway	through	

stress	inoculation,	as	well	as	the	DMN	pathway	through	the	experience	of	“flow”.	

Consistent	with	this	additive	prediction,	in	cross-sectional	studies	team-sport	

athletes	report	lower	rates	of	poor	mental	health	than	individual-sport	athletes	

(Chekroud	et	al.,	2018;	Pluhar	et	al.,	2019).	Some	high-intensity	outdoor	sports	like	

mountaineering	and	surfing	could	have	the	added	benefit	of	further	reducing	DMN	

activity	via	nature	exposure	and	potentially	awe.	While	some	correlational	reports	
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link	high-intensity	sports	with	affective	psychopathology,	such	as	bipolarity	(Siwek	

et	al.,	2015),	others	link	them	to	well-being	(Houge	Mackenzie	&	Brymer,	2018).	

Given	that	emotion	regulation	(Barlow,	Woodman,	&	Hardy,	2013)	and	emotional	

catharsis	(Zhou,	Chlebosz,	Tower,	&	Morris,	2019)	may	be	important	motivations	

for	participating	in	some	of	these	sports,	it	is	possible	that	these	activities	are	sought	

as	a	form	of	mood	repair.	Consistent	with	the	idea	that	participation	in	such	sports	

may	be	therapeutic,	sports-oriented	occupational	therapy,	such	as	“surf-therapy”,	is	

being	investigated	as	a	potential	intervention	for	mental	health	problems	in	military	

service	members	(Walter	et	al.,	2019)	and	vulnerable	youth	(Godfrey,	Devine-

Wright,	&	Taylor,	2015).	Thus,	the	proposition	that	participation	in	team	and/or	

high-intensity	sports	can	enhance	resilience	is	an	empirical	question	that	warrants	

examination.	Similarly,	being	in	a	musical	band	is	predicted	to	be	particularly	

effective,	because	it	would	not	only	activate	the	reward	pathway	through	sensory	

pleasure,	social	connectedness,	and	self-efficacy,	but	it	would	likely	also	affect	the	

DMN	pathway	through	the	experience	of	“flow”	and	potentially	awe.		

	 To	test	the	tripartite	model	and	practical	usefulness	of	these	interventions,	

randomized	trials	can	investigate	the	effect	of	each	intervention	on	resilience	

outcomes	and	comparative	studies	can	assess	the	relative	efficacy	of	single-	vs.	

multiple-route	strategies.	Particularly	useful	would	be	studies	with	longitudinal	

designs	that	can	assess	long-term	effects	of	the	intervention.	

	

7.2.	Prediction	Approaches		

	 Longitudinal	designs	are	also	important	for	prediction	studies.	Specifically,	if	
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the	tripartite	model	is	valid,	then	to	the	extent	that	there	are	stable	individual	

differences	in	neural	activation	in	the	distress,	reward,	and	default	mode	networks,	

baseline	activation	in	each	network	should	predict	not	only	differences	in	

subsequent	stress	resilience	but	potentially	also	in	treatment	response.	As	reviewed	

in	this	section,	prospective	longitudinal	designs	in	which	individuals	are	followed	

before,	during,	and	after	exposure	to	stressors,	can	best	test	such	hypotheses.	

Beyond	providing	tests	of	the	tripartite	model,	prediction	studies	may	also	identify	

new	targets	for	intervention	and	contribute	to	individualized	intervention.	

	

7.2.1	Predicting	Resilience	

	 As	urged	by	other	resilience	researchers,	there	is	currently	a	pressing	need	

for	prospective	longitudinal	studies	of	resilience	(Kalisch	et	al.,	2017).	In	particular,	

there	is	a	relative	dearth	of	human	studies	on	whether	functioning	of	the	distress,	

reward,	or	default	mode	networks	can	predict	health	outcome	after	subsequent	

exposure	to	stressors.	Nonetheless,	some	findings	compatible	with	the	tripartite	

model	do	exist.	For	example,	prospective	studies	have	identified	HPA	markers	of	

subsequent	PTSD	symptoms	in	male	soldiers	undergoing	warzone	deployment	

(reviewed	in	Kalisch	et	al.,	2017)	and	ventral	striatum	markers	of	subsequent	

depressive	symptoms	in	adolescents	(Telzer	et	al.,	2014).	Prospective	studies	of	this	

type	can	test	the	involvement	of	the	distress,	reward,	and	default	networks	in	

resilience	and	identify	other	targets	for	intervention.	These	studies	may	also	help	

determine	the	predictive	value	of	neural	resilience	markers,	for	example	for	

identifying	the	most	resilient	individuals	to	confront	an	upcoming	stressor	(e.g.,	war	
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deployment)	versus	the	less	resilient	individuals	who	may	benefit	from	proactive	

resilience-training	first.	Studies	that	measure	neural	activity	at	multiple	time-points	

–	before,	during,	and	after	a	stressor		–	can	also	help	elucidate	the	mechanisms	of	

adaptive	coping.	

	

7.2.2	Predicting	Treatment	Response:	Tailored	Medicine	

	 Baseline	activation	in	brain	networks	may	not	only	predict	resilience	

outcomes	but	may	also	offer	a	tool	for	individualized	or	tailored	intervention.	For	

example,	individuals	low	on	reward	network	activation	might	benefit	more	from	

one	type	of	intervention,	while	individuals	high	on	distress	or	default	mode	network	

activation	might	benefit	more	from	another.	Similarly,	given	that	many	

psychopathologies	are	associated	with	LPFC	deficits	(e.g.,	Tabibnia	et	al.,	2011;	

Zilverstand	et	al.,	2017),	these	individuals	may	not	benefit	as	much	from	cognitive	

coping	strategies,	such	as	cognitive	reappraisal,	that	recruit	this	region	(e.g.,	

Morawetz,	Bode,	Derntl,	et	al.,	2017;	Tabibnia	et	al.,	2014)	and	instead	may	respond	

better	to	alternative,	more	bottom-up	strategies,	such	as	those	in	the	positivity	

boosting	or	self-transcendence	routes	(e.g.,	Westbrook	et	al.,	2013).	Prospective	

longitudinal	intervention	studies	are	needed	to	evaluate	the	predictive	value	of	

neural	markers	for	tailoring	intervention.	

	 	

7.3.	Other	future	directions		

	

	 To	help	test	and	further	develop	the	tripartite	model,	future	studies	can	not	
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only	test	the	predictions	outlined	above,	but	also	conduct	more	formal,	quantitative,	

and	bias-corrected	reviews	of	the	literature	to	ascertain	reliable	involvement	of	

each	neural	pathway	in	a	given	strategy.	Future	work	can	also	elucidate	underlying	

mechanisms	by	investigating	neural-level	interactions	among	the	3	pathways.	For	

example,	findings	that	stimulation	of	the	reward	network	can	down-regulate	

amygdala/HPA	activity	(Dutcher	&	Creswell,	2018)	offer	a	potential	explanation	for	

how	strategies	like	social	connectedness	can	not	only	be	rewarding	but	also	down-

regulate	negative	affect.	Similarly,	reduction	of	DMN	activity,	such	as	through	

mindfulness,	may	impact	amygdala/HPA	response,	perhaps	by	reducing	ruminative	

thinking	that	could	otherwise	stimulate	distress-related	activity	in	these	regions	

(Nejad,	Fossati,	&	Lemogne,	2013;	Sheline	et	al.,	2009).	In	addition	to	individual	

differences	in	baseline	activation	that	may	moderate	resilience	and	intervention	

outcomes,	other	moderating	factors,	such	as	personality	(Segerstrom	&	Smith,	

2019)	and	culture	(Tsai,	2017),	would	also	be	important	to	investigate.	

	

	

8.	Conclusions	

	

8.1.	Summary	and	significance	

	

	 Taking	an	affective	neuroscience	approach,	I	proposed	a	simple	three-route	

model	of	boosting	resilience	in	adulthood	that	aims	to	unify	the	large	body	of	

literature	on	resilience.	Specifically,	according	to	the	tripartite	model	of	resilience-
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building,	the	three	distinct	general	routes	to	resilience	are	1)	down-regulating	the	

negative	(reducing	distress-related	responses	of	the	amygdala	and	hypothalamic-

pituitary-adrenal	(HPA)	axis),	2)	up-regulating	the	positive	(activating	mesostriatal	

reward	pathways),	and	3)	transcending	the	self	(reducing	activation	in	the	default	

mode	network).	To	build	the	theory,	I	first	described	the	mechanism	underlying	

each	neural	pathway	to	resilience.	Then,	to	support	the	theory,	I	systematically	

reviewed	over	two-dozen	behavioral	and	psychosocial	strategies	that	boost	

resilience	and	demonstrated	that	each	strategy	recruits	at	least	one	of	these	

pathways.	

	 To	date,	no	single	model	of	resilience	can	account	for	the	dozens	of	

behavioral	and	psychosocial	resilience-building	strategies	that	dominate	the	

literature.	Prior	models,	although	important	and	similar	in	many	ways,	differ	in	

significant	ways	from	the	tripartite	model.	Like	Kalisch	et	al.	(2015)‘s	PASTOR	

model,	the	tripartite	model	assumes	there	are	far	fewer	distinct	psychobiological	

mechanisms	than	factors	to	resilience	and	recognizes	the	importance	of	identifying	

these	few	shared	mechanisms.	While	both	models	account	for	a	wide	range	of	

cognitive-based	strategies	to	resilience,	the	tripartite	model	also	accounts	for	a	host	

of	additional	strategies,	including	social	and	physical	health	strategies.	In	contrast,	

Waugh	and	Koster	(2015)‘s	resilience	framework,	a	model	of	resilience	

interventions	for	remission	from	depression,	includes	both	a	distress	

downregulation	and	a	positivity	upregulation	route,	in	addition	to	a	third	route	they	

call	“flexibility”,	which	they	suggest	may	be	enhanced	through	meditation.	The	

tripartite	model	formalizes	these	3	routes	in	terms	of	their	plausible	functional	
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neuroanatomical	mechanisms,	which	helps	account	for	a	far	greater	variety	of	

strategies	than	either	of	these	models.		

	 An	implication	of	the	tripartite	model	is	that	merely	eliminating	stressors	

and	perceptions	of	threat	are	not	sufficient	for	optimal	resilience-building.	As	

espoused	by	“positive	psychology”	approaches,	successful	intervention	should	also	

include	strategies	from	the	positivity-boosting	route,	and	likely	from	the	self-

transcending	route	as	well.		This	idea	is	consistent	with	recent	neurobiological	and	

evolutionary	models	of	the	stress	response	and	disease	(Brosschot,	Verkuil,	&	

Thayer,	2017)	positing	that	the	absence	of	threat	is	not	the	same	as	the	presence	of	

safety.	Both	distress-reduction	and	positivity-boosting	strategies	are	needed	to	

more	successfully	minimize	chronic	stress	and	its	downstream	consequences.			

	 Despite	the	general	recognition	in	health	and	clinical	psychology	that	both	

positive	and	negative	affect	should	be	targeted	in	resilience-building	(Johnson	&	

Wood,	2017;	Southwick	&	Charney,	2012;	Waugh	&	Koster,	2015),	there	is	still	some	

resistance	in	incorporating	“positive	interventions”	into	psychological	therapy	

(Johnson	&	Wood,	2017),	and	some	ambiguity	remains	as	to	whether	positive	and	

negative	human	functioning	(e.g.,	happiness	and	depression)	are	opposite	ends	of	

the	same	continuum	(Johnson	&	Wood,	2017;	Wood	&	Tarrier,	2010)	or	two	distinct,	

at	least	partly	orthogonal,	continua	(B.	D.	Dunn,	2017;	Ryff	et	al.,	2006;	Westerhof	&	

Keyes,	2010).	The	affective	neuroscience	approach	of	the	tripartite	model	helps	

clarify	the	important	and	unique	contributions	of	each	of	these	two	routes	to	

resilience	and	helps	resolve	the	theoretical	ambiguity,	as	it	points	to	distinct	(albeit	

interacting)	networks	in	the	brain	for	negative	and	positive	affective	function.	



	

Page 77 of 123	

	

8.2.	Limitations	&	Conclusion	

	

	 While	resilience	in	the	face	of	trauma	is	not	uncommon	(Bonanno,	2004),	

there	are	limits	to	the	prevalence	or	ease	of	resilience,	such	as	in	chronic	mass-

trauma	or	politically	violent	regions,	where	prevalence	of	PTSD	and	depression	are	

higher	and	resilience	trajectories	are	poorer	than	in	other	populations	(Hobfoll,	

Mancini,	Hall,	Canetti,	&	Bonanno,	2011).	Even	in	peaceful	regions,	prevalence	of	

resilience,	in	terms	of	subjective	well-being	and	self-reported	physical	health,	in	the	

long-term	aftermath	of	such	adversities	as	spousal	loss	and	unemployment,	can	be	

lower	than	50%	(Infurna	&	Luthar,	2016).	Also	limited	is	the	effectiveness	of	specific	

resilience	strategies.	While	engaging	in	activities	that	increase	positive	affect	tends	

to	boost	resilience,	positive	affect	is	not	always	beneficial	(Pressman	&	Cross,	2018).	

For	example,	excessive	happiness	or	mania	can	lead	to	neglect	of	threat,	and	

inappropriate	expressions	of	happiness,	such	as	when	in	need	of	help	or	during	

confrontation	or	negotiation,	can	solicit	unwanted	social	responses	(reviewed	in	

Gruber,	Mauss,	&	Tamir,	2011).	

	 There	are	limits	to	any	theory	of	resilience	as	well.	Three	facets	of	the	

tripartite	model	that	highlight	its	boundaries	are:	1)	it	is	an	affective	neuroscience	

model	that	focuses	on	brain	networks;	2)	it	is	a	model	of	behavioral	and	psychosocial	

strategies;	and	3)	it	is	a	model	of	resilience-building	in	adulthood.	Thus,	the	model	

does	not	exhaustively	incorporate	neurochemical	or	other	biological	pathways	that	

are	important	for	resilience.	In	its	current	form,	it	does	not	model	the	important	
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roles	of	individual	or	sociological	factors	(Dunkel	Schetter	&	Dolbier,	2011),	

pharmaceutical	interventions,	or	developmental	factors	(Casey,	Glatt,	&	Lee,	2015),	

that	can	influence	resilience	outcomes.	That	is	not	to	say	that	these	factors	are	not	

important	or	that	they	cannot	be	integrated	into	future	iterations	of	the	model.	The	

current	version	of	the	tripartite	model	is	intended	to	be	a	simple	framework	for	

identifying	common	mechanisms	underlying	behavioral	and	psychosocial	(i.e.,	non-

invasive	and	relatively	easy	to	implement)	strategies	that	can	help	boost	resilience	

in	adults.		

	 In	conclusion,	the	tripartite	model	is	a	unifying	theory	of	resilience-building	

in	adulthood,	a	model	that	makes	predictions	and	opens	the	door	to	discovery	of	

potential	new	or	largely	ignored	cognitive	and/or	psychosocial	strategies	and	

approaches	to	resilience-building.	Although	the	model	does	not	formally	

incorporate	individual	differences	factors,	it	paves	the	way	for	an	individualized-	or	

tailored-medicine	approach	to	resilience-building.	Given	the	limitations	of	current	

resilience-building	approaches	and	the	prevalence	of	stress-related	mental	and	

physical	health	problems,	novel	approaches,	such	as	those	proposed	in	this	paper,	

are	needed	for	conceptualizing	resilience-building	and	generating	novel	

interventions.		
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Figure	Captions	

	

Fig.	1A.	The	tripartite	model	of	resilience-building.	Taking	an	affective	neuroscience	

approach,	three	distinct	general	routes,	and	hence	three	distinct	categories	of	

strategies,	to	resilience	are	proposed:	1)	down-regulating	the	negative,	2)	up-

regulating	the	positive,	and	3)	transcending	the	self.	First,	at	the	center	of	the	model,	

are	strategies	that	directly	down-regulate	negative	affect	and	reduce	distress-

related	responses	of	the	amygdala,	hypothalamic-pituitary-adrenal	(HPA)	axis,	and	

autonomic	nervous	system	(ANS).	The	second	route	to	resilience	encompasses	

strategies	that	up-regulate	positive	affect,	including	psychological,	social,	and	

physical	well-being,	activating	mesostriatal	pathways	of	reward	and	motivation.	The	

third	route	to	resilience	encompasses	strategies	that	promote	an	experience	of	self-

transcendence	and	reduce	activation	in	the	default	mode	network	(DMN),	a	network	

of	brain	regions	associated	with	self-reflection,	mind-wandering,	and	rumination.	

Solid	arrow	from	a	category	of	strategies	to	a	brain	network	indicates	that	there	is	

evidence	for	every	one	of	the	strategies	within	the	category	to	activate	the	brain	

network.	Dashed	arrow	indicates	that	there	is	evidence	for	only	some	of	the	

strategies	in	the	category	to	impact	the	brain	network.	For	example,	all	strategies	

that	up-regulate	the	positive	have	been	shown	to	activate	the	reward	network.	

However,	only	some	strategies	that	up-regulate	the	positive,	including	social	

support	and	sleep,	have	been	shown	to	also	reduce	distress-related	responses	of	the	

amygdala	and	HPA.	Question	mark	(?)	indicates	emerging	strategy	that	the	model	
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would	predict	as	beneficial	to	resilience	via	the	depicted	neural	pathway	but	that	

needs	further	investigation.	

	

	

Fig.	1B.	Tripartite	model,	zoomed	out.	Top-down	voluntary	or	implicit	control	over	

each	of	the	three	pathways	to	resilience	can	be	exerted	via	prefrontal	(PFC)	regions	

that	support	decision-making,	self-regulation,	and	other	executive	function.	

Strategies	that	recruit	or	improve	PFC	executive	function,	such	as	psychological	

flexibility	and	cognitive	training,	may	impact	resilience	via	the	mesostriatal,	

amygdala/distress,	and/or	default	mode	pathways.		
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Table	1.	Strategies	to	Resilience	and	Their	Neural	Pathways	

	

	

	

	

	

Table	Notes.	ACC	=	Anterior	Cingulate	Cortex;	DMN	=	Default	Mode	Network;	HPA	=	

Hypothalamic	Pituitary	Adrenal;	LPFC	=	Lateral	Prefrontal	Cortex;	MPFC	=	Medial	

Prefrontal	Cortex;	PTSD	=	Post-Traumatic	Stress	Disorder;	VTA	=	Ventral	Tegmental	

Area		

	



Behavioral Coping
Exposure & Reconsolidation

Active avoidance 
Controlling the stressor  

Stress inoculation 

Positivity
Optimism
Smiling
Humor

Self-affirmation
Positive memories

Cognitive Coping
Cognitive Behavioral Therapy
Cognitive Bias Modification 

Affect labeling 
Emotion disclosure

Acceptance                          
Cognitive reappraisal

Self-efficacy

Mindfulness
Purpose in life / Religion

Exposure to nature
“Flow”
Awe?

Hypnotic state?

Social Connectedness
Receiving social support

Giving social support
(incl. Compassion

& Gratitude)

  
ê Amygdala /

HPA / ANS
ê Default 

Mode Network

Physical Health
Sleep 

Exercise
Dietary restriction

Gut microbiota

Down-regulating the NegativeUp-regulating the Positive Transcending the Self

é Mesostriatal
Reward 

Networks

Resilience



Distress-reducing 
strategies 

Self-transcending 
strategies

Positivity-boosting 
strategies

ê Amygdala /
HPA / ANS

ê Default 
Mode Network

é Mesostriatal 
Reward 

Networks

Resilience

PFC

Executive-based 
strategies 



Strategy Link	to	Resilience Sample	References	(Resilience) Neural	Pathway(s) Sample	References	(Pathways)
1.	Downregulating	the	negative
1a.	Behavioral	coping
Exposure Common	treatment	for	anxiety	

disorders,	including	phobias	and	
PTSD	(Reduces	fear	over	time,	
but	fear	may	return)

reviewed	in	Craske,	Treanor,	Conway,	
Zbozinek,	&	Vervliet	(2014)	and	in	Foa	&	
McLean	(2016)

New	safety	memory	formed	
in	amygdala,	consolidated	in	
MPFC,	inhibits	old	amygdala-
based	fear	memory

reviewed	in	Furini,	Myskiw,	&	Izquierdo	
(2014),	in	Milad	&	Quirk	(2012),	in	Sotres-
Bayon,	Cain,	&	LeDoux	(2006),	in	Fullana	
et	al.	(2018),	in	Hartley	&	Phelps	(2010,)	
and	in	Sehlmeyer	et	al.	(2009);	Goossens,	
Sunaert,	Peeters,	Griez,	&	Schruers	
(2007);	Herrmann	et	al.	(2017);	Raij	et	al.	
(2017);	Hauner,	Mineka,	Voss,	&	Paller	
(2012)

Reconsolidation Emerging	treatment	approach	
for	anxiety	disorders,	including	
phobias	and	PTSD	(Intended	to	
reduce	fear	long	term)

reviewed	in	Kredlow,	Unger,	&	Otto	
(2016)	and	in	Craske,	Treanor,	Conway,	
Zbozinek,	&	Vervliet	(2014)

May	weaken	exisiting	
amygdala-based	fear	
memory

reviewed	in	Beckers	&	Kindt	(2017)	and	in	
Baldi	&	Bucherelli	(2015);	Argen	et	al.	
(2012);	Bjorkstrand	et	al.	(2017);	Schiller,	
Kanen,	LeDoux,	Monfils,	&	Phelps	(2013)

Active	coping	(active	
avoidance,	controlling	the	
stressor)

Better	mental	and	physical	
health;	better	pain	management

reviewed	in	Koolhaas	et	al.	(1999)	&	
Russo	et	al.	(2012);	Emmert	et	al.	(2017);	
Bowen	et	al.	(2014);	Y.	Ono	et	al.	(2012);	
Y.	Ono	et	al.	(2012);	Snow-Turek,	Norris,	
&	Tan	(1996)

Plasticity	in	amygdala	-->	
corticostriatal	circuitry;	
Plasticity	in	MPFC-->	
brainstem/limbic	circuitry;	
Reduces	autonomic	
reactivity

reviewed	in	LeDoux	&	Gorman	(2001);	
LeDoux,	Moscarello,	Sears,	&	Campese	
(2017);	Cain	&	LeDoux	(2007);	Moscarello	
&	LeDoux	(2013);	Delgado	et	al.	(2009);	
Maier	(2015);	Hartley	et	al.	(2014),	Kerr	et	
al.	(2012)

Stress	inoculation	 Better	subjective	affect;	
successfully	used	to	treat	mood	
and	anxiety	disorders

reviewed	in	R.	T.	Liu	(2015),	in	Seery	
(2011),	in	Levine	(1957),	in	Rutter	(1981),	
in	Dienstbier	(1989),	in	Maier,	(2015),	in	
Parker	&	Maestripieri	(2011),	in	Russo	et	
al.	(2012),	in	Meichenbaum	(2017),	and	in	
Saunders,	Driskell,	Johnston,	&	Salas	
(1996);	Shapero	et	al.	(2015)

Plasticity	in	MPFC	(e.g.,	
increase	in	volume);	
modulation	of	HPA	axis	&	
amygdala

reviewed	in	Levine	&	Mody	(2003),	in	
Russo	et	al.	(2012),	and	in	Tottenham	
(2015);	Brockhurst,	Cheleuitte-Nieves,	
Buckmaster,	Schatzberg,	&	Lyons	(2015);	
Amat,	Paul,	Zarza,	Watkins,	&	Maier	
(2006);	Parker	et	al.	(2004);	Katz	et	al.	
(2009);	Lee,	Buckmaster,	Yi,	Schatzberg,	&	
Lyons	(2014);	Sinha,	Lacadie,	Constable,	&	
Seo	(2016)

1b.	Cognitive	coping	(incl.	emotion	regulation)
Cognitive	behavioral	
therapy	(CBT)

Common	treatment	for	mood	
and	anxiety	disorders

reviewed	in	Clark	&	Beck	(2010),	in	
Cuijpers	et	al.	(2013),	in	Hofmann	&	Smits	
(2008),	in	Craske	et	al.	(2017),	in	Tolin	
(2010),	and	in	DeRubeis,	Siegle,	&	Hollon	
(2008)

Reduces	amygdala	activation	
and	enhances	prefrontal	
function

reviewed	in	Porto	et	al.	(2009);	Furmark	
et	al.	(2002);	Lipka	et	al.	(2014);	reviewed	
in	Clark	&	Beck	(2010);	DeRubeis,	Siegle,	
&	Hollon	(2008);	de	Lange	et	al.	(2008);	
Shou	et	al.	(2017)

Affect	labeling Reduces	subjective	distress;	can	
improve	outcome	of	exposure	
therapy

Lieberman,	Inagaki,	Tabibnia,	&	Crockett	
(2011);	Constantinou,	Van	Den	Houte,	
Bogaerts,	Van	Diest,	&	Van	den	Bergh	
(2014);	Kircanski,	Lieberman,	&	Craske	
(2012);	Niles,	Craske,	Lieberman,	&	Hur	
(2015)

Reduces	autonomic	
reactivity	in	short-	and	long-
terms;	reduces	amygdala	
activation,	likely	via	LPFC

Hariri	et	al.	(2003);	Lieberman	et	al.	
(2007);	Lieberman	et	al.	(2011);	Tabibnia	
et	al.	(2008);	Torrisi	et	al.	(2013);	Brooks	
et	al.	(2017)

Emotion	disclosure																										Improves	mental	and	physical	
health	outcomes

reviewed	in	Hemenover	(2003),	in	
Pennebaker	(1997),	in	Frattaroli	(2006),	
and	in	Riddle,	Smith,	&	Jones	(2016);	
Krapan	et	al.	(2013)

Likely	re-encodes	amygdala-
based	trauma	memory	in	
neocortex

Brewin	(2001);	Careaga,	Girardi,	&	
Suchecki	(2016);	Wang	et	al.	(2014);	
Memarian	et	al.	(2017);	Bourassa	et	al.	
(2017)

Emotion	acceptance Reduces	subjective	distress	;	
successfully	used	to	treat	mood	
and	anxiety	disorders;	improves	
pain	tolerance

reviewed	in	Hayes	(2004),	in	Lindsay	&	
Creswell	(2017),	andin		Kohl,	Rief,	&	
Glombiewski	(2012);	Dan-Glauser	&	
Gross,	(2015);	Arch	et	al.	(2012);	Forman,	
Herbert,	Moitra,	Yeomans,	&	Geller	
(2007)

Likely	stregnthens	LPFC-
amygdala	functional	
connectivity

Smoski	et	al.	(2015);	Ellard	et	al.	(2017);	
Young	et	al.	(2017);	Young	et	al.	(2019)

Cognitive	reappraisal	(incl.	
distancing)

Reduces	subjective	distress;	
important	component	of	CBT

reviewed	in	Powers	&	LaBar	(2019),	in	
Augustine	&	Hemenover	(2009),	in	Webb	
et	al.	(2012),	in	John	&	Gross	(2004),	in	
Southwick	&	Charney	(2012),	and	in	Troy	
&	Mauss	(2011)

Reduces	autonomic	arousal;	
reduces	amygdala	activation,	
likely	via	LPFC

reviewed	in	Buhle	et	al.	(2014)	and	in	
Powers	&	LaBar	(2019);	Klumpp	et	al.	
(2018);	Morawetz,	Bode,	Baudewig,	&	
Heekeren	(2017);	d'Arbeloff	et	al.	(2018);	
Feeser	et	al.	(2014);	Marques	et	al.	
(2018);	Denny	et	al.	(2015)

Self-efficacy	(incl.	
perception	of	control)

Better	mental	health,	esp.	
following	trauma;	facilitates	
mental	health	interventions;	
reduces	pain	perception

reviewed	in	Benight	&	Bandura	(2004)	
and	in	Schwarzer	&	Warner	(2013);	
Blackburn	&	Owens	(2015);	Schnoll	et	al.	
(2011);	Schuck,	Otten,	Kleinjan,	Bricker,	&	
Engels	(2014);	Goldin	et	al.	(2012);	
Zlomuzica,	Preusser,	Schneider,	&	
Margraf,	2015;	Morina	et	al.	(2018);	
Bowers	(1968);	Mackie,	Coda,	&	Hill	
(1991)

Reduces	activation	in	pain	
network	and	amygdala,	likely	
via	LPFC;	alters	MPFC	
connectivity,	including	with	
amygdala

Salomons	et	al.	(2004);	Brascher	et	al.	
(2016);	Wiech	et	al.	(2006);	Titcombe-
Parekh	et	al.	(2018);	M.	Ono	et	al.	(2017)



Cognitive	Bias	Modification	
(CBM)

Reduces	depression	and	anxiety	
symptoms

reviewed	in	Koster	&	Hoorelbeke	(2015),	
in	Jones	&	Sharpe	(2017),	and	in	Mogg,	
Waters,	&	Bradley	(2017)

Decreases	amygdala	
reactivity;	increases	LPFC	
activation;	LPFC	stimulation	
improves	outcome

Hiland	et	al.	(2019);	Taylor	et	al.	(2014);	
Browning,	Holmes,	Murphy,	Goodwin,	&	
Harmer	(2010);	Clarke,	Browning,	
Hammond,	Notebaert,	&	MacLeod	
(2014);	Heeren	et	al.	(2017);	Ironside,	
O'Shea,	Cowen,	&	Harmer	(2016)

2.	Upregulating	the	positive
2a.	Psychologically	(Positivity)
Optimism Improves	mental	and	physical	

health,	esp.	following	stress;	
improves	psychotherapy	
outcome;	decreases	pain	
perception

reviewed	in	Scheier	&	Carver	(2018);	L.	O.	
Lee	et	al.	(2019);	Seligman	et	al.	(1988);	
Reivich,	Gillham,	Chaplin,	&	Seligman	
(2013);	Seligman,	Steen,	Park,	&	Peterson	
(2005);	L.	A.	King	(2001);	Meevissen,	
Peters,	&	Alberts	(2011);	Hanssen,	Peters,	
Vlaeyen,	Meevissen,	&	Vancleef	(2013)

Increases	dopaminergic	
neural	firing;	activates	
reward	network,	including	
MPFC	and	ventral	striatum;	
greater	striatal	gray	matter

Schultz,	Dayan,	&	Montague	(1997);	
Knutson,	Adams,	Fong,	&	Hommer	
(2001);	Sharot	et	al.	(2012);	Kuzmanovic,	
Jefferson,	&	Vogeley	(2016);	Yamada	et	
al.	(2013);	Flagan	&	Beer	(2013);	
D’Argembeau	et	al.	(2008);	Benoit	et	al.	
(2014);	Gerlach	et	al.	(2014);	Lai,	Wang,	
Zhao,	Qiu,	&	Gong	(2019)

Smiling Improves	subjective	affect;	
greater	longevity

reviewed	in	Fernández-Dols	&	Crivelli	
(2013),	in	Reisenzein,	Studtmann,	&	
Horstmann	(2013),	and	in	Coles,	Larsen,	&	
Lench	(2019);	Seder	&	Oishi	(2011);	Abel	
&	Kruger	(2010);	Kraft	&	Pressman	(2012)

Reduces	autonomic	arousal	
during	stress	recovery;	
activates	the	striatum,	
MPFC,	and	amygdala;	
activates	the	same	patterns	
of	regional	brain	activity	as	
spontaneous	smiling

Kraft	&	Pressman	(2012);	Ekman	&	
Davidson	(1993);	Hennenlotter	et	al.	
(2005);	Hsu,	Sims,	&	Chakrabarti	(2018);	
T.	W.	Lee,	Josephs,	Dolan,	&	Critchley	
(2006)

Humor Lower	mortality;	improves	
mental	health	outcomes,	incl.	
following	stress	

reviewed	in	Kuiper	(2012),	in	Bonanno	
(2004),	and	in	Southwick	et	al.	(2005);	
Sliter,	Kale,	&	Yuan	(2014);	Romundstad,	
Svebak,	Holen,	&	Holmen	(2016);	Ford,	
Lappi,	O’Connor,	&	Banos	(2017);	
Maiolino	&	Kuiper	(2016)

Activates	reward	network,	
incl.	VTA,	nucleus	
accumbens,	amygdala,	and	
medial	orbitofrontal	cortex

Chan	et	al.	(2018);	Goel	&	Dolan	(2001);	
Mobbs,	Greicius,	Abdel-Azim,	Menon,	&	
Reiss	(2003);	Shibata,	Terasawa,	&	Umeda	
(2014);	Bartolo,	Benuzzi,	Nocetti,	Baraldi,	
&	Nichelle	(2006);	Mobbs,	Hagan,	Azim,	
Menon,	&	Reiss	(2005);	Amir	&	
Biederman	(2016)

Self-affirmation Improves	subjective	affect,	esp.	
following	stress;	facilitates	
executive	function

reviewed	in	G.	L.	Cohen	&	Sherman	
(2014)	and	in	Steele	(1988);	Hales,	
Wesselmann,	&	Williams	(2016);	
Creswell,	Dutcher,	Klein,	Harris,	&	Levine	
(2013);	Churchill,	Jessop,	Green,	&	Harris	
(2018);	P.	S.	Harris,	Harris,	&	Miles	(2017);	
Schmeichel	&	Vohs	(2009);	Logel,	
Kathmandu,	&	Cohen	(2018);	Brady	et	al.	
(2016)

Reduces	autonomic	
response	to	stress;	activates	
reward	network,	incl.	ventral	
striatum	and	MPFC

Sherman,	Bunyan,	Creswell,	&	Jaremka	
(2009);	Cascio	et	al.	(2016);	Dutcher	et	al.	
(2016)

Positive	memories Improves	subjective	affect,	incl.	
in	clinical	samples

reviewed	in	Westermann,	Spies,	Stahl,	&	
Hesse	(1996);	Johnson,	Gooding,	Wood,	
Fair,	&	Tarrier	(2013);	Panagioti,	Gooding,	
&	Tarrier	(2012);	Arditte	Hall,	De	Raedt,	
Timpano,	&	Joormann	(2018)

Reduces	HPA	stress	
response;	activates	reward	
network,	incl.	nucleus	
accumbens	and	MPFC	

Ramirez	et	al.	(2015);	Speer	&	Delgado	
(2017);	Speer,	Bhanji,	&	Delgado	(2014);	
Suardi	et	al.	(2016)

2b.	Physically
Sleep Improves	mental	and	physical	

health;	may	also	facilitate	stress	
recovery

reviewed	in	McEwen	(2006),	in	Irwin,	
Olmstead,	&	Carroll	(2016),	in	Rumble,	
White,	&	Benca	(2015),	in	
Vandekerckhove	&	Cluydts	(2010),	and	in	
A.	N.	Goldstein	&	Walker	(2014);	N.	K.	
Tang,	Fiecas,	Afolalu,	&	Wolke	(2017)

Reduces	autonomic,	HPA,	
and	amygdala	distresss	
response;	affects	amygdala-
MPFC	functional	
connectivity;	activates		
reward	network;	affects	
MPFC-to-accumbens	
signaling	and	integrity	of	
ventral	striatum

reviewed	in	Krause	et	al.	(2017),	in	
Meerlo,	Sgoifo,	&	Suchecki	(2008),	in	van	
Dalfsen	&	Markus	(2018),	in	Goldstein-
Piekarski,	Greer,	Saletin,	&	Walker	(2015),	
and	in	Volkow	et	al.	(2012);	Motomura	et	
al.	(2013);	Yoo,	Gujar,	Hu,	Jolesz,	&	
Walker	(2007);	Perogamvros	&	Schwartz	
(2012);	Z.	Liu	et	al.	(2016);	Whitman	et	al.	
(2017)

Exercise Improves	physical	and	mental	
health;	improves	executive	
function

reviewed	in	Ashdown-Franks	et	al.	(2020),	
in	Kramer	&	Erickson	(2007),	in	Penedo	&	
Dahn	(2005),	and	in	Warburton	&	Bredin	
(2017)

Neuroplasticity	in	LPFC	and	
MPFC;	activates	reward	
network	and	affects	its	
integrity

Basso	&	Morrell	(2015);	Greenwood	et	al.	
(2011);	Meeusen	&	Fontenelle	(2012);	
Herrera	et	al.	(2016);	Marais,	Stein,	&	
Daniels	(2009);	Mul	et	al.	(2018);	Batouli	
&	Saba	(2017);	Dang	et	al.	(2017);	
Robertson	et	al.	(2016);	C.	Chen	et	al.	
(2017);	Byun	et	al.	(2014).

Food	restriction Increases	healthy	lifespan;	can	
improve	physical	and	mental	
health

reviewed	in	Longo	&	Mattson	(2014),	in	C.	
Lee	&	Longo	(2016),	and	in	Horne,	
Muhlestein,	&	Anderson	(2015);	Martin	et	
al.	(2016);	Ravussin	et	al.	(2015)

Facilitates	amygdalar	fear	
extinction;	has	
neuroprotective	effects	on	
striatal	and	midbrain	
dopamine	neurons;	may	
activate	reward	network	via	
orexin

Verma	et	al.	(2016);	Maalouf,	Rho,	&	
Mattson	(2009);	Maswood	et	al.	(2004);	
Bruce-Keller,	Umberger,	McFall,	&	
Mattson	(1999);	Marie,	Bralet,	Gueldry,	&	
Bralet	(1990);	G.	C.	Harris	&	Aston-Jones	
(2006);	Lutter	et	al.	(2008);	Manchishi,	
Cui,	Zou,	Cheng,	&	Li	(2018);	Zhang	et	al.	
(2015)



Gut	microbiome Increase	healthy	lifespan;	can	
improve	physical	and	mental	
health

reviewed	in	Long-Smith	et	al.	(2020),	in	
Pereira	et	al.	(2020),	in	Spielman,	Gibson,	
&	Klegeris	(2018),	in	Mayer,	Knight,	
Mazmanian,	Cryan,	&	Tillisch	(2014),	in	
Foster,	Rinaman,	&	Cryan	(2017),	in	
Sarkar	et	al.	(2016),	and	in	Cryan	&	Dinan	
(2012);	Buffington	et	al.	(2016);	Gacias	et	
al.	(2016);	Jiang	et	al.	(2015);	Luna	&	
Foster	(2015);	Sharon,	Sampson,	
Geschwind,	&	Mazmanian	(2016);	
Patterson	et	al.	(2014);	Dinan,	Stanton,	&	
Cryan	(2013);	Butler,	Cryan,	&	Dinan	
(2019);	R.	T.	Liu,	Walsh,	&	Sheehan	(2019)

Regulates	amygdala	fear-
related	function	&	
morphology;	modulates	HPA	
stress-response;	can	affect	
microglia	growth	in	VTA;	can	
affect	prefrontal	and	striatal	
dopamine;	associated	with	
reward	anticipation	
response	in		ventral	striatum	
and	with	connectivity	of	the	
network,	incl.	amygdala	and	
nucleus	accumbens

reviewed	in	Cryan	&	Dinan	(2012);	
Luczynski,	McVey	Neufeld,	et	al.	(2016);	
Sarkar	et	al.	(2018);	Sharon	et	al.	(2016);	
reviewed	in	de	Weerth	(2017);	Foster	et	
al.	(2017);	Hoban	et	al.	(2018);	Luczynski,	
Whelan,	et	al.	(2016);	Patterson	et	al.	
(2014);	Aarts	et	al.	(2017);	K.	Lee	et	al.	
(2018);	Osadchiy	et	al.	(2018);	Wei	et	al.	
(2019);	Huang	et	al.	(2018)

2c.	Socially
Receiving	social	validation	
and	support

Improves	mental	and	physical	
health;	lower	morbidity	and	
mortality		

reviewed	in	House,	Landis,	&	Umberson	
(1988),	in	Buettner	(2012),	in	Holt-
Lunstad,	Smith,	&	Layton	(2010),	in	Thoits	
(2011),	in	Uchino	(2006),	and	in	
Southwick	et	al.	(2005);	Fowler	&	
Christakis	(2008);	Chopik	&	O'Brien	(2017)

Reduces	distress	response	
(e.g.,	HPA,	pain	network);	
activates	reward	network,	
incl.	ventral	striatum;	
possibly	via	oxytocin-reward	
pathways	that	promote	
social	attachment	and	
attenuate	HPA	&	ACC	stress	
responses	

Gunaydin	et	al.	(2014);	reviewed	in	
Kiyokawa	&	Hennessy	(2018)	and	in	
Eisenberger	(2013);	Morelli,	Torre,	&	
Eisenberger	(2014);	Tabibnia,	Satpute,	&	
Lieberman	(2008);	reviewed	in	Tabibnia	&	
Lieberman	(2007);	Heinrichs,	
Baumgartner,	Kirschbaum,	&	Ehlers	
(2003);	Shamay-Tsoory	&	Abu-Akel	
(2016);	Hung	et	al.	(2017);	Morhenn,	
Beavin,	&	Zak	(2012);	Coan,	Schaefer,	&	
Davidson	(2006)

Giving	social	validation	and	
support

Better	mental	and	physical	
health;	greater	longevity

reviewed	in	Eisenberger	(2013),	in	
Southwick	et	al.	(2005),	in	Curry	et	al.	
(2018),	in	Post	(2005),	and	in	Rachman	
(1979);	Inagaki	et	al.	(2016);	S.	L.	Brown,	
Brown,	House,	&	Smith	(2008)

Reduces	distress	response	
(e.g.,	amygdala,	autonomic);	
activates	reward	network,	
incl.	ventral	striatum

reviewed	in	Eisenberger	(2013),	in	Cutler	
&	Campbell-Meiklejohn	(2019),	and	in	
Hubbard,	Harbaugh,	Srivastava,	Degras,	&	
Mayr	(2016);	Inagaki	et	al.	(2016);	Inagaki	
&	Eisenberger	(2012;	2016);	Zaki	&	
Mitchell	(2011);	Decety,	Jackson,	
Sommerville,	Chaminade,	&	Meltzoff	
(2004)

Giving:	Compassion Improves	mental	and	physical	
health;	improves	subjective	
affect;	improves	psychotherapy	
outcome

Fredrickson,	Cohn,	Coffey,	Pek,	&	Finkel	
(2008);	reviewed	in	Hofmann,	Grossman,	
&	Hinton	(2011);	Cosley,	McCoy,	Saslow,	
&	Epel	(2010);	Engert,	Kok,	Papassotiriou,	
Chrousos,	&	Singer	(2017);	Klimecki,	
Leiberg,	Ricard,	&	Singer	(2014)

Reduces	autonomic	and	HPA	
stress	response;	activates	
reward	network	,	incl.	
ventral	striatum	&	MPFC

Cosley,	McCoy,	Saslow,	&	Epel	(2010);	
Engert,	Kok,	Papassotiriou,	Chrousos,	&	
Singer	(2017);	reviewed	in	Hofmann	et	al.	
(2011);	Klimecki	et	al.	(2014);	Preckel,	
Kanske,	&	Singer	(2018);	Weng	et	al.	
(2013);	Engen	&	Singer,	(2015);	J.	W.	Kim	
et	al.	(2009);	Mercadillo,	Diaz,	Pasaye,	&	
Barrios	(2011)

Giving:	Gratitude Improves	mental	and	physical	
health;	improves	psychotherapy	
outcome

Hill,	Allemand,	&	Roberts	(2013);	
reviewed	in	Seligman	et	al.	(2005);	
Kaczmarek	et	al.	(2015);	S.	L.	Kerr,	
O’Donovan,	&	Pepping	(2015);	Wong	et	
al.	(2018)

Reduces	autonomic	arousal;	
associated	with	connectivity	
of	and	activation	in	reward	
network,	incl.	ventral	
striatum	&	MPFC;	has	lasting	
effect	on	MPFC	activation

Kyeong,	Kim,	Kim,	Kim,	&	Kim	(2017);	Yu,	
Gao,	Zhou,	&	Zhou	(2018);	Karns,	Moore,	
&	Mayr	(2017);	Kini,	Wong,	McInnis,	
Gabana,	&	Brown	(2016);	Fox,	Kaplan,	
Damasio,	&	Damasio	(2015);	Zahn	et	al.	
(2009)

3.	Self-Transcendence
Mindfulness Can	improve	mental	and	physical	

health,	as	well	as	executive	
function;	effective	treatment	
tool	for	depression	and	anxiety	

reviewed	in	Holzel	et	al.,	2011),	in	Lin,	
Callahan,	&	Moser,	2018),	in	Vago	&	
Silbersweig,	2012),	in	Creswell	&	Lindsay,	
2014),	in	Creswell	(2017),	and	in	Goldberg	
et	al.	(2018);	Basso,	McHale,	Ende,	
Oberlin,	&	Suzuki	(2019);	Wielgosz,	
Goldberg,	Kral,	Dunne,	&	Davidson	(2019)

Changes	amygdala	and	PFC	
structure	and	function	
associated	with	self-
regulation	and	attention;	
reduces	activity	in	DMN

reviewed	in	Holzel	et	al.	(2011),	in	Tang	et	
al.	(2015),	in	Brewer	et	al.	(2011),	in	Fox	
et	al.	(2016),	and	in	Guendelman	et	al.	
(2017);	Kral	et	al.	(2018)

Purpose	in	life	(incl.	religion	
and	spirituality)

Can	improve	mental	and	physical	
health

Reviewed	in	Reker	et	al.	(1987),	in	Zika	&	
Chamberlain	(1992),	in	Ryan	&	Deci	
(2001),	in	Southwick	et	al.	(2005),	in	
Cheadle	&	Dunkel	Schetter	(2017),	in	
Bouso,	Dos	Santos,	Alcazar-Corcoles,	&	
Hallak	(2018),	in	Nunes	et	al.	(2016),	and	
in	Myers	(2000);	Alim	et	al.	(2008);	
Griffiths	et	al.	(2016;	Ross	et	al.	(2016)

Associated	with	reduced	
activity	in	distress	networks;	
associated	with	sustained	
activity	in	reward	network;	
reduces	activity	in	and	
functional	connectivity	
within	DMN

Inzlicht	et	al.	(2011);	Heller	et	al.	(2013);	
Van	Reekum	et	al.	(2007);	Kang	et	al.	
(2017);	Raichle	et	al.	(2001);	A.	C.	Chen	et	
al.	(2013);	Uddin,	Kelly,	Biswal,	Xavier	
Castellanos,	&	Milham	(2009);	Wu	et	al.	
(2010);	Carhart-Harris	et	al.	(2012);	
Urgesi,	Aglioti,	Skrap,	&	Fabbro	(2010);	
Crescentini,	Aglioti,	Fabbro,	&	Urgesi	
(2014);	Crescentini,	Di	Bucchianico,	
Fabbro,	&	Urgesi	(2015);	Palhano-Fontes	
et	al.	(2015);	Carhart-Harris	et	al.	(2016)



Exposure	to	nature Improves	mental	and	physical	
health,	as	well	as	executive	
function

reviewed	in	Annerstedt	&	Wahrborg	
(2011),	in	Hartig,	Mitchell,	de	Vries,	&	
Frumkin	(2014),	in	Keniger,	Gaston,	
Irvine,	&	Fuller	(2013),	in	Haluza,	
Schonbauer,	&	Cervinka	(2014),	in	Kuo	
(2015),	and	in	Tost,	Champagne,	&	Meyer-
Lindenberg	(2015);	Stothard	et	al.	(2017)

Reduces	autonomic	and	HPA	
activity;	reduces	activity	in	
DMN;	correlated	with	gray	
matter	in	DMN

reviewed	in	Norwood	et	al.	(2019);	
Haluza,	Schonbauer,	&	Cervinka	(2014);	
Keniger	et	al.	(2013);	D.	K.	Brown,	Barton,	
&	Gladwell	(2013);	Bratman,	Hamilton,	
Hahn,	Daily,	&	Gross	(2015)

Flow Improves	subjective	affect;	
better	mental	health	

Csikszentmihalyi	&	LeFevre	(1989);	
Rankin,	Walsh,	&	Sweeny	(2018);	Mosing,	
Butkovic,	&	Ullen	(2018);	Ascenso,	
Williamon,	&	Perkins	(2016);	Fritz	&	Avsec	
(2007);	Gould,	Dieffenbach,	&	Moffett	
(2010);	Jackson,	Ford,	Kimiecik,	&	Marsh	
(1998);	Ilies	et	al.	(2017);	Sadlo	(2016)

Reduces	autonomic	and	
amygdala	arousal;	activates	
striatum;	correlated	with	
dopamine	receptor	
availability	and	gene	
polymorphism;	reduces	
activity	in	DMN	

Duan	et	al.	(2012);	Knierim,	Rissler,	
Dorner,	Maedche,	&	Weinhardt,	2018);	
Ulrich,	Keller,	&	Gron	(2016);	Ulrich	et	al.	
(2014);	Huskey	et	al.	(2018);	de	Manzano	
et	al.	(2013);	Gyurkovics	et	al.	(2016)


