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Abstract
Formal spaces have become commonplace conceptual and
computational tools in a large array of scientific disciplines,
including both the natural and the social sciences. Morpholog-
ical spaces (morphospaces) are spaces describing and relating
organismal phenotypes. They play a central role in morpho-
metrics, the statistical description of biological forms, but also
underlie the notion of adaptive landscapes that drives many
theoretical considerations in evolutionary biology. We briefly
review the topological and geometrical properties of the most
common morphospaces in the biological literature. In contem-
porary geometric morphometrics, the notion of a morphospace
is based on the Euclidean tangent space to Kendall’s shape
space, which is a Riemannian manifold. Many more classi-
cal morphospaces, such as Raup’s space of coiled shells, lack
these metric properties, e.g., due to incommensurably scaled
variables, so that these morphospaces typically are affine vec-
tor spaces. Other notions of a morphospace, like Thomas and
Reif’s (1993) skeleton space, may not give rise to a quanti-
tative measure of similarity at all. Such spaces can often be
characterized in terms of topological or pretopological spaces.

The typical language of theoretical and evolutionary biol-
ogy, comprising statements about the “distance” among phe-
notypes in an according space or about different “directions”
of evolution, is not warranted for all types of morphospaces.
Graphical visualizations of morphospaces or adaptive land-
scapes may tempt the reader to apply “Euclidean intuitions”
to a morphospace, whatever its actual topology might be. We
discuss the limits of metaphors such as the developmental
hourglass and adaptive landscapes that ensue from the geo-
metric properties of the underlying morphospace.
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In his celebrated 1917 book, D’Arcy Thompson stressed the
significance of construing the physical configuration of an
organism as a mathematical object—represented in terms of
Cartesian coordinates—for establishing morphology as a rig-
orous scientific discipline (Thompson 1917). However, already
from the late 19th century on, initial developments in statis-
tics such as correlation and regression were applied to mor-
phological measurements, yet without explicitly considering
the mathematical spaces induced by the measured data. For
example, in 1888 Frances Galton introduced the correlation
coefficient and applied it to a variety of measurements on
humans such as body height, head length and width, or arm
length (Galton 1888). He further produced a scatter plot of
two variables, stature versus cubit length, and assessed the ge-
ometry of the data points across the two-dimensional space of
the plot. In 1907 Galton invented a method to quantify facial
shape that has later been termed as two-point shape coordi-
nates (Galton 1907; see also Bookstein 1991). In an attempt
in 1934 to compare a mummified head, claimed to be Oliver
Cromwell’s, to a range of portraits and busts of Cromwell,
Galton’s student Karl Pearson and the anthropologist G. M.
Morant (Pearson and Morant 1934) computed all the ratios of
distances among pairs of morphological measurement points
and compared them across the heads. Without referring to the
space of shape variables itself, Galton as well as Pearson and
Morant already had the numbers in hand that would place the
configurations as points in the underlying shape space.

Only after the foundations of multivariate statistics had
been laid down in the first half of the 20th century did the
study of mathematical spaces and analytic geometry become
an integral part of statistics. Basically, two sorts of spaces are

Figure 1.
A simple data matrix, comprising two measurements A and B for the three cases 1–3, is visualized in two different ways. In Q-Space (left) the two variables are
taken as axes and the three cases are single points each. R-space (right) is spanned by the three cases, and the variables are two points in this space. When the
data is standardized to a mean of zero, the cosine of the angle between the two vectors (the continuous gray lines) connecting the origin with the points A and B

is equal to the correlation between A and B (for these data 0.98).

used in applied multivariate statistics to represent data for p

measurements on n cases: The p-dimensional space spanned
by the variables, often called Q-space, in which each of the n

measured specimens is represented by a single point, and the n-
dimensional R-space (or dual space) with p points representing
the variables (e.g., Mardia et al. 1979; see also Figure 1).

The correlation between two variables can be represented
in R-space as the cosine of the angle between the two vectors
connecting the corresponding points (the two variables) with
the origin. Thus, phenomena like morphological integration
and modularity, which often are defined in terms of statistical
associations among morphological variables, are best studied
in this space (Mitteroecker and Bookstein 2007). The distance
between points in Q-space, in contrast, reflects similarities
among the measured objects. Classically, distances between
points are computed as the Euclidean distance, thereby tak-
ing the measured variables as Cartesian coordinates of an un-
derlying Euclidean vector space. However, modern literature
on mathematical statistics comprises numerous (relatively ab-
stract) spaces that do not exhibit a Euclidean structure, but
are based, for example, on Riemannian geometry (e.g., Amari
1985; Mitteroecker and Bookstein 2009; see also below).

Morphological spaces, or morphospaces, are mathemati-
cal spaces describing and relating the phenotypic configuration
of biological organisms and are central tools in nowadays theo-
retical and mathematical biology. They have been used both in
a merely metaphorical sense and in the context of actual mathe-
matical and statistical computations. In a typical morphospace,
the morphological configuration of an organism is represented
by a single point, and the dimensionality of the space is de-
termined by the number of measured variables (Q-space).
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However, in many studies the typically high-dimensional mor-
phospaces are represented by low-dimensional summaries or
projections.

The geometric relationship among points in a mor-
phospace should reflect biologically meaningful relationships
among the corresponding morphologies. For example, we ex-
pect that the distance between points represents morpholog-
ical similarity: “closer” morphologies are more similar than
more “distant” morphologies. Furthermore, a simple geomet-
ric structure in morphospace, such as a straight trajectory of
several morphologies, should correspond to a simple underly-
ing cause or explanation, like a single developmental process
or evolutionary transformation. Two nearly parallel linear tra-
jectories are expected to indicate similar underlying processes,
whereas diverging trajectories should be due to different
processes.

Our intuitive concept of “a space” is usually dominated
by Euclidean spaces, such as the three-dimensional physical
space or the two-dimensional surface of a sheet of paper, even
though many other spaces with different geometric proper-
ties are conceivable. The geometric properties will in general
depend on the empirical structure under consideration. A Eu-
clidean vector space is a space with a range of quite stringent
relations and properties, allowing many algebraic and geomet-
ric operations. The algebraic structure underlying Euclidean
geometry is given by a vector space in which there is a well-
defined notion of addition and (scalar) multiplication. A vector
(e.g., representing some phenotypic change) can be extended
or truncated (multiplied) while maintaining its direction, and
it is possible to add two vectors or decompose a vector into
a sum of two or more others. For instance, one can predict
the phenotype that lies “in-between” two other phenotypes,
or calculate a phenotype that results from several different
transformations.

Apart from this algebraic structure, Euclidean space has
various other properties. First, it is a metric space, i.e., there
exists a metric distance d that meets the following three con-
ditions for any two points x and y in the space:

(1) d(x, y) ≥ 0, where equality holds if and only if y = x;
(2) d(x, y) = d(y, x); and
(3) d(x, y) + d(y, z) ≥ d(x, z).

That is, in a metric morphospace two phenotypes inhabit
the same position only if they are identical, and the distance
between a phenotype x and a phenotype y is identical to the
distance between y and x. Furthermore, the distance between
two phenotypes is smaller or equal to the sum of the distances
between these two phenotypes and a third one.

In addition, Euclidian space is characterized by the exis-
tence of an inner product and a norm. The standard Euclidean
norm of a vector is defined as the square root of its summed
squared elements and is equal to the “length” of the vector.

The concepts of inner product and norm allow us to define
angles and distances between vectors. In Euclidean space, the
distance between two points x and y is equal to the norm of
the vector x–y, and is a metric measure of the distance.

All these geometric relations appear very natural and al-
most trivial, as we are used to them from the physical space or
the real plane R2. These notions also are deeply entrenched in
the rhetoric of modern biology: Two species may exhibit differ-
ent “directions” of evolution; two forms may be “closer” (phe-
notypically more similar) than two other ones; we may “ex-
tend” or “truncate” an evolutionary or developmental trajec-
tory, or may express a phenotype as the “sum” of two different
transformations. Whether a morphospace is used as a metaphor
or for computational purposes, it must possess the mathemat-
ical properties listed above to allow a language of that style.

Even though phenotypic spaces are often implicitly as-
sumed to have a Euclidean structure, we will show that in
most cases this assumption appears to be too strong. The
actual geometric properties of a space depend on the data
that induce the space, and in particular on the nature of the
measured variables. When formalized precisely many mor-
phospaces are weaker than Euclidean spaces (and sometimes
they are much weaker); in other words, they exhibit different
groups of symmetries or invariances. This implies that some
of the usual concepts and properties that we associate with
our informal concept of “space” are not meaningful in certain
morphospaces.

Affine Morphospaces

In the late 1950s and 1960s, three more or less different sci-
entific communities adopted similar and relatively informal
notions of a morphospace. In numerical taxonomy, aimed at
classifying organisms by phenetic data, “taxonomic distances”
were computed based on a range of observed characters (Sokal
1961; Rohlf and Sokal 1965; Sneath and Sokal 1973). For the
purpose of visualizability, most researchers preferred to ex-
press taxonomic distance by the Euclidian distance among
individuals or taxa, so that they can be plotted as points in
a Euclidean “phenetic space.” Several other metrics (such as
Manhattan distance or Canberra distance) have also been sug-
gested that do not constitute a Euclidean space, but ordination
methods like principal coordinate analysis were often used
to compute a space in which the Euclidean distances among
individuals approximate the original distances.

The application of the multivariate statistical methods that
emerged in the first half of the 20th century to a wide array
of phenotypic measurements has been termed as multivariate
morphometrics and is nowadays frequently referred to as tra-
ditional morphometrics (Blackith and Reyment 1971; Marcus
1990; Reyment 1991). In a variety of biological and pale-
ontological contexts, scatter plots of selected morphological
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Figure 2.
Raup’s (1966) morphospace of coiled shells. He used three out of several parameters in a geometric model simulating shell geometry to define the axes of his
space. These parameters are the rate of increase in the size of the generated shell cross section per revolution, the distance between the cross section and the
coiling axis, and the rate of translation of the cross section along the axis per revolution. Many existing taxa can be placed within this space, but most parts of
the space remain “empty” (the white regions).

variables or ordinations such as principal component analy-
sis and canonical variate analysis were used to produce two-
or three-dimensional spaces in which the relationship among
different phenotypes can be studied.

Somewhat independently, David Raup developed a sim-
ple geometrical model of coiled shells, essentially based on
three different parameters, and used early analog computers
to plot the modeled geometry (Raup and Michelson 1965;
Raup 1966). In his influential approach, he took these three
parameters as orthogonal axes of a morphospace, in which he
compared the areas occupied by different taxa to those regions
of the space that have not been explored by Nature (Figure 2).
Attempts in that style are sometimes referred to as theoreti-
cal morphology; an extensive review can be found in McGhee
(1999).

In most of these, meanwhile classical, approaches the
measured variables constitute a vector space. But in contrast to

Euclidean space, the axes do not necessarily posses commen-
surate units. For example, in traditional morphometrics, differ-
ent measures, such as distances, angles, or volumes, sharing
no common scales, are often analyzed jointly. Niklas and Ker-
chner (1984) constructed a three-dimensional morphospace
of branching plant forms based on measures as different as
“probability of branching termination,” “bifurcation angle,”
and “rotation angle.” Two of Raup’s three parameters are of
the same unit, but they serve fundamentally different roles in
his geometric model and there is no “natural” relation among
their scales. In some cases the axes may also lack a meaning-
ful origin. Furthermore, some variables may be geometrically
dependent (such as the distances and angles of a triangle) so
that it might be misleading to take them as orthogonal axes of a
morphospace. (Also, Raup’s three parameters are not indepen-
dent; a change in “whorl expansion rate” automatically leads
to changes in the other two variables; see Schindel 1990.)
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Figure 3.
(a) Four points (phenotypes) in a two-dimensional morphospace. The configuration in (b) is the same as in (a), except that the scale of variable 1 is linearly
compressed. Configuration (c) is both compressed and sheared. In an affine space only the properties that are invariant to affine transformations (translation,
rotation, scaling, shearing) are meaningful. While in (a) the distance AB is larger than AC, the reverse is true in (b). Also the angle CAB depends on the scale and
orientation of the axes. But the vectors AB and CD are parallel in all three spaces and the ratio AB/CD remains constant.

In a space based on such variables, geometric findings
are only meaningful when they do not depend on the scaling
and the orientation of the axes as well as on the origin of the
space. A geometry that is invariant (unchanging) relative to
such affine transformations is called affine geometry and the
underlying space is an affine space. Affine spaces are weaker
than Euclidean spaces; i.e., a Euclidean space is also an affine
space, but not every affine space is Euclidean (Suppes et al.
1989). In a vector space (such as in Figure 3), affine trans-
formations correspond to the scaling of the coordinate axes
and the shearing of the space, i.e., a rotation of the axes. As
distances and angles are not preserved under such transforma-
tions, they are not meaningful in an affine space.

However, certain geometric properties are invariant rel-
ative to affine transformations. For example, they preserve
collinearity among points, i.e., three points lying on a line
continue to be collinear after an affine transformation (paral-
lel lines are transformed into parallel lines, and parallelograms
into parallelograms). As a consequence, affine transformations
preserve incidence relationships (geometric statements such as
“a point X lies on a line l” or “line l1 intersects line l2”) and
ratios of distances along a line.

Furthermore, affine transformations leave barycentric
combinations unchanged (linear combinations with weights
that sum up to 1). That is, the idea of a mid-point or a centroid
is meaningful in an affine space.

A familiar measure of distance in statistics that is invari-
ant to affine transformations is Mahalanobis distance, which
expresses the distance between points relative to the statis-
tical distribution of a subset of the points. Intuitively, affine
transformations affect the distances in the same way as the
reference distribution and hence leave the relative distances
unchanged.

Many classical morphospaces, such as Raup’s space or
the ones produced in early morphometrics, are affine spaces.
Biological inferences from an empirical distribution in such

a morphospace necessarily are constrained by the underlying
affine geometry. Phenotypes that occupy the same position in
an affine morphospace are identical, and there is a well-defined
notion of parallel vectors. That is, two phenotypic transforma-
tions can be identified as “the same” even if they are applied
to different template phenotypes. Vectors also can be added
and multiplied by scalars, which is to say that a certain phe-
notypic change can be extended or truncated. Yet, the distance
between two phenotypes cannot be compared with the distance
between two other phenotypes (except when the two distances
are along parallel directions). Angles also cannot be related di-
rectly in an affine space. Different nonoverlapping regions of
a morphospace stay nonoverlapping under affine transforma-
tions, but the “size” of these regions is not meaningful per se,
only ratios of volumes are invariant. In theoretical and com-
parative biology, several researchers are concerned with the
study of “disparity,” i.e., the area of a morphospace occupied
by different taxa (e.g., Foote 1993). In a (locally) Euclidean
space, a range of different measures of disparity may be ap-
plied (such as the trace of the population covariance matrix),
but in an affine space, disparities of different taxa can only be
compared as ratios of the generalized variance (determinant of
the population covariance matrix). The generalized variance
relates to the “volume” of the distribution of phenotypes in the
underlying morphospace, so that ratios of such measures are
invariant to affine transformations. (For a proof and details on
the statements of this section, see Huttegger and Mitteroecker
in preparation.)

Kendall’s Shape Space and Riemannian Geometry

Modern morphometrics—the branch of statistics concerned
with the measurement of biological form—is based on mea-
surement points, so-called landmarks, and is usually re-
ferred to as geometric morphometrics. Unlike Galton’s and
Pearson’s early attempts as well as traditional multivariate
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Figure 4.
The three steps of Procrustes superimposition. All landmark configurations are translated to a common origin, scaled to unit centroid size, and rotated to minimize
the sum of squared Euclidean distances among the homologous landmarks. The resulting landmark coordinates are called Procrustes shape coordinates; they
are standardized for location, size, and orientation to reflect only shape information. The Euclidean distance between two configurations of shape coordinates is
called (partial) Procrustes distance and is a metric measure of shape difference.

morphometrics, landmark-based approaches can express sta-
tistical results in terms of landmark coordinates and thus
as actual morphologies or deformations of morphologies
(Bookstein 1991; Slice 2005; Mitteroecker and Gunz 2009;
for historical reviews see, e.g., Rohlf and Marcus 1993;
Bookstein 1998).

The mathematical theory of shape for such landmark con-
figurations was developed somewhat independently by several
researchers in the 1980s (Kendall 1981, 1984; Bookstein 1991;
Small 1996; Dryden and Mardia 1998). Kendall’s shape space,
named after the Scottish mathematician David Kendall, is the
mathematical space for the shapes of different point configura-
tions. Take a set of n objects in k dimensions and describe their
forms by p landmarks each. The shape of an object equals the
geometric properties that are invariant under translation, rota-
tion, and scaling of the object. In his pioneering work, Kendall
(1981, 1984) showed that a metric that takes into account only
shape differences between two landmark configurations in-
duces a pk−k−k(k − 1)/2−1-dimensional shape space. But
this space is not a “flat” Euclidean space; rather it constitutes a
“curved” Riemannian manifold. As a simple example of a Rie-
mannian manifold one may consider smooth two-dimensional
surfaces in three-dimensional space. The distance between any
two points on a manifold is defined as the length of the short-
est curve connecting these two points. At any point on the
manifold there is a Euclidean space tangent to the manifold
(e.g., a plane tangent to a curved surface). Thus, a Riemannian
manifold by itself cannot be regarded as a Euclidean space
(just as a metric space); but in a sufficiently small neighbor-
hood of any point it is approximately Euclidean. The metric
on Kendall’s shape space is usually referred to as Procrustes
distance and is estimated in most applications by a General-
ized Procrustes Analysis (Figure 4; Rohlf and Slice 1990). For
the simplest two-dimensional object, a triangle, shape space
is a two-dimensional manifold with the form of the surface
of a (hemi)sphere (Figure 5; see also Slice 2001). Kendall’s
shape space for more than three landmarks is more complex
and cannot be visualized easily.

Figure 5.
Kendall’s shape space for triangles is a two-dimensional manifold with the
form of the surface of a hemisphere. Any point in this space represents the
shape of one triangle. The figure shows one representation of this space along
with five different shapes, where the “north pole” is an equilateral triangle.

For small-scale variation, the nonlinear shape space can
be approximated by a Euclidean tangent space (Rohlf 1999). In
an analysis of cranial shape, Marcus et al. (2000) demonstrated
that this linear approximation provides a good representation
of shape variation for a wide range of different mammalian
taxa. As most statistical tools available are based on linear
models, the majority of modern morphometric analyses are
performed in this tangent space rather than in Kendall’s shape
space.

In almost all practical applications, the shape space under-
lying the set of measured landmarks is of very high dimension
and cannot be visualized without the loss of information (for
instance, shape space for 10 three-dimensional landmarks has
23 dimensions). In statistics, low-dimensional representations
of high-dimensional data spaces are called ordination analyses
(see, e.g., Mardia et al. 1979; Johnson and Wichern 1998). The
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most classical and widespread method is principal component
analysis (PCA), which provides a low-dimensional orthogo-
nal projection of the full space so that most of the variance
in the data is preserved by the projection. Other ordination
methods, such as canonical variate analysis, multidimensional
scaling, and correspondence analysis, are not simple orthog-
onal projections and hence distort the geometry of the space;
these methods were used mainly in non-landmark-based ap-
proaches. The full shape space can also be partitioned into
different subspaces based on statistical and geometrical cri-
teria such as symmetric versus asymmetric shape variation,
functional significance, integrated versus modular variation,
or the geometric scale of shape variation (Bookstein 1989;
Rasskin-Gutman and Buscalioni 1996; Klingenberg and
McIntyre 1998; Mardia et al. 2000; Manfreda et al. 2006;
Mitteroecker and Bookstein 2008).1 By augmenting the shape
coordinates with the natural logarithm of centroid size—the
measure of overall size in geometric morphometrics—shape
space can be extended to Procrustes form space (also called
size-shape space; Mitteroecker et al. 2004).

Kendall’s shape space is an example of a morphospace
that is locally Euclidean and thus warrants (locally) all the
notions of distance, length, and angle. However, this geometric
morphometric approach requires the identification of the same
set of biologically homologous landmarks at every measured
individual and thus constrains the diversity of organisms that
can be compared at once in such a space. Due to the curvature
of shape space, this methodology further imposes limits on the
range of variability that can be assessed for these landmarks,
but in most real-world applications this range is not exceeded.

Metric Spaces

Euclidean spaces and affine spaces have the algebraic struc-
ture of a vector space, and Kendall’s shape space is locally
Euclidean, i.e., the tangent space at each point in Kendall’s
shape space has the structure of a vector space. Metric spaces
do not need to be vector spaces, however. Important biologi-
cal examples are given by the space of nucleotide sequences
or amino acid sequences of finite length i (e.g., Stadler et al.
2001; Stadler and Stadler 2004). Clearly, these spaces are not
vector spaces over the field of real numbers: multiplying a
sequence with a real number or adding two sequences does
not necessarily yield another valid sequence. Yet, a metric can
be defined by the so-called Hamming distance. The Hamming
distance between two sequences s and s ′ is given by the num-
ber of positions where s and s ′ differ. For example, s is one step
away from s ′ if there exists exactly one position i at which s ′

has a value different from the value of s at i (Figure 6a).
The Hamming distance is meaningful for point mutations

in nucleotide sequences. There are four possible entries at each
position, and at each position these possibilities are the same

Figure 6.
(a) Three DNA sequences with seven nucleotides each. The Hamming distance
between two sequences is given by the number of positions at which the
sequences differ. The first sequence in the figure has a Hamming distance of
1 to the second sequence and of 2 to the third sequence. Sequences second
and third differ at three positions. (b) Three sequences with five positions
each, but in contrast to the nucleotide sequences, the positions here are not
comparable among each other. It is unclear if a metric distance is warranted in
this case. Yet, a qualitative notion of neighborhood or similarity is possible. For
example, the first sequence differs at position three from the second sequence,
and the third sequence differs at the same position from the first one plus in
one further position (position two). The third sequence hence is farther away
from the first sequence than is the second sequence.

(A, G, C, and T or U ). If we assume that any mutation of
one nucleotide into another has the same probability (which
is, of course, an idealization), then changing position i in the
sequence can be assigned a real number r > 0 regardless of the
incumbent and the mutant nucleotide. Since this holds for any
position in the sequence, the resulting metric distance between
two sequences x and y will be r times the Hamming distance
of x and y. Hence, the Hamming distance is unique up to
multiplication by a positive real number.

The space of nucleotide sequences together with the Ham-
ming distance constitutes a metric space. The space of nu-
cleotide sequences is not a morphospace, of course (although
it is related to certain interesting morphospaces such as the
space of RNA’s secondary structure; see below). But we can
think of a morphospace having a similar metric structure as the
space of nucleotide sequences. Take a set of k nominal pheno-
typic variables that can take on p different values, e.g., the k

body segments of an arthropod, each having one of the p possi-
ble types of appendages. If it would be biologically reasonable
to assume that (evolutionary) changes of these character states
are equally likely (e.g., by comparable homeotic mutations), a
meaningful distance function would be the number of elements
in which two phenotypes differ. This distance would corre-
spond to the probability of an evolutionary transition from one
phenotype to another and induces a metric space. The notion of
a distance between two phenotypes is thus meaningful in such
a space, even though no vector structure exists (vectors cannot
be added or multiplied) and the concepts of direction and angle
are undefined (there is no inner product). A Euclidean graphi-
cal representation of a metric space without a vector structure
can be misleading, as it would indicate geometric relationships
that actually do not exist. A more correct representation is pos-
sible by a Hamming graph connecting all states differing by a
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Figure 7.
Representation of two to five “combinations of paired allelo-morphs” as Ham-
ming graphs in Sewall Wright’s famous 1932 paper, in which he introduced
the concept of fitness landscapes.

unit Hamming distance. Figure 7 shows five such graphs with
which Sewall Wright (1932) aimed to represent the distances
among different “combinations of paired allelomorphs.”

Topological Spaces and Weaker Structures

Thomas and Reif (1993) introduced the “skeleton space” and
applied it to categorize morphological variability in hard skele-
tons of Burgess Shale animals during the Middle Cambrian
(Thomas et al. 2000). This attempt is another example of a
morphospace where phenotypes are distinguished by having
different states for certain morphological characteristics. The
elements of the skeleton set consist of seven variables or po-
sitions, which can be represented as a 7-tupel (x1, . . . , x7).
There are two to four possible states at each position, e.g.,
one position describes whether the skeleton of the specimen is
internal or external; another one describes the growth pattern
of the skeleton (accretionary; addition of serial units; molting
and replacement; remodeling).

The skeleton space, as described by Thomas and Reif
(1993), is in fact a set of certain modes for the design of
animal skeletons aimed at capturing the phenomenon of con-
vergent evolution. In their enumerative approach, the authors
did not provide any relations such as a metric among the possi-
ble modes (and hence it is not a “space” in a strict sense). It is
tempting, though, to apply the Hamming distance to the skele-
ton set, i.e., to say that specimen a is k steps from specimen
a′ if they differ at k positions. But the seven variables are not
comparable in their developmental or phylogenetic meaning,
nor are the possible values comparable within one position.
For example, the third variable in Thomas et al. (2000), de-

noting the number of skeletal elements, can take on the values
“one,” “two,” or “many.” It is quite easy to see that using
the Hamming distance cannot be justified as in the space of
nucleotide sequences. At each position we may assign differ-
ent numbers to a change in that position. Moreover, numbers
representing differences may vary across the positions in the
sequence. Changes within as well as across positions are too
unrelated to establish meaningful relations between the num-
bers representing distances in a straightforward way.

Even if it turns out that no meaningful quantitative mea-
sure of distance can be assigned to such a set, some qualitative
notion of “nearness” may be warranted. For example, take a
phenotype B differing in k positions from A. A phenotype C

that differs in the same k positions from A plus in one further
position can be regarded as farther away from A than is B

(Figure 6b). Alternatively, it might be possible to formulate
“neighborhood relations” in terms of the accessibility among
phenotypes: Two phenotypes are neighbors if a direct (evolu-
tionary) transition from one phenotype to the other is possible
(but this relation does not need to be symmetric). Sets equipped
with such a qualitative nearness or neighborhood relationship
may give rise to topological or pretopological spaces.2

There are several other interesting pretopological spaces
in biology. For example, the space of nucleotide sequences—
which is metric when considering point mutations only—is
incompatible with a metric distance measure when unequal
crossover is allowed, but satisfies the conditions for a pre-
topology (Stadler et al. 2002). Fontana and Schuster (1998a,
1998b) introduced an RNA shape space describing the folding
of RNA sequences into secondary structures. The topology of
this shape space is determined by the “genetic accessibility”
among the folding structures: Several RNA genotypes fold into
the same secondary structure and hence constitute one “neu-
tral network” of RNA sequences (Figure 8). The nearness of
an RNA phenotype to another phenotype is determined by the
size of the joint boundary between the two corresponding neu-
tral networks relative to the total size of the network, and thus
relates to the probability of a transition from one phenotype to
the other through random point mutations. As neutral networks
for different RNA shapes may be of different sizes, the near-
ness relation may be asymmetric and hence does not support a
metric geometry but can be described as a pretopology. Perhaps
this elegant approach may never be applied to actual organ-
ismal morphologies (where the genotype–phenotype map is
considerably more complex). But it allows several inferences
that are likely to apply to the realm of macroscopic anatomy
as well (see also Stadler et al. 2001).

Morphospaces as Metaphors

Morphospaces are frequently used in quantitative fields of
research like morphometrics, theoretical morphology, and
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Figure 8.
RNA shape space equipped with an accessibility topology. Each “neutral net-
work” of RNA sequences (black, gray, and light gray) gives rise to one specific
secondary RNA shape. The nearness between two phenotypes is determined
by the relative size of the joint boundary between the two corresponding
neutral networks and reflects the genetic accessibility based on random point
mutations. For example, a random step off the black network is likely to end
up in the light gray network, but not vice versa. Thus, the black RNA shape
is near the light gray one, but the light gray shape is not near the black RNA
shape. (Modified from Stadler et al. (2001))

population genetics. As demonstrated in the preceding sec-
tions, the biological meaningfulness of empirical or theoreti-
cal results obtained from such computational studies strongly
depends on the geometrical and topological properties of the
employed morphospace. However, phenotypic spaces are also
used in a more metaphorical sense in developmental and evo-
lutionary biology. Below we will discuss two widely used
metaphors, the developmental hourglass and the fitness land-
scape. We show that even in a less quantitative context, the
utility of these concepts is partly determined by the geometric
properties of the underlying morphospace.

The Developmental Hourglass
In 19th-century embryology, the idea of recapitulation—in
particular Ernst Haeckel’s biogenetic law—was the source of
continued dispute. Basically, Haeckel emphasized that evo-
lution proceeds by appending new developmental events to
the end of the descendent’s ontogeny; hence the claim that
ontogeny recapitulates phylogeny. One prominent opponent
of this view was Karl Ernst von Baer, who argued that em-
bryos develop from general and uniform early stages to more
and more specific and individualized older stages—ontogeny

is not recapitulation but differentiation. In his Entwicklungs-
geschichte der Thiere, he wrote, “The further we go back in
the development of vertebrates, the more similar we find the
embryos both in general and in their individual parts.” (von
Baer 1828: 221).

No adult stage of another animal is ever recapitulated dur-
ing ontogeny, yet different taxa may share common embryonic
stages in their development while differing in later ontogeny.
Milne-Edwards (1844: 72, cited after Gould 1977) expressed
von Baer’s arguments in a very figurative way:

The metamorphoses of embryonic organization, considered in the
entire animal kingdom, do not constitute a single, linear series of
zoological phenomena. There are a multitude of these series . . . They
are united in a bundle at their base and separate from each other in
secondary, tertiary, and quaternary bundles, since in rising to approach
the end of embryonic life, they depart from each other and assume
distinctive characteristics.

The biogenetic law was eventually rejected with the rise of
experimental methods in embryology in the late 19th century
and finally with the rediscovery of Mendelian genetics in the
1910s and 1920s (Gould 1977). In contrast, von Baer’s view
of comparative embryology—as tree-like divergence from
common undifferentiated early stages—is still maintained in
modern developmental biology, but has been extended by the
observation that very early development is subject to sub-
stantial interspecific variation too. In contemporary EvoDevo
literature, this extended view is often illustrated by the devel-
opmental hourglass (Raff 1996) or the phylotypic egg timer
(Duboule 1994; see Figure 9). The ontogenetic trajectories of
different species may be clearly distinct at the earliest stages
(right after conception), but converge to a phylotypic stage
at mid-development, and diverge again thereafter in a “von
Baerian” style. Duboule speculated that the phylotypic stage is
due to the highly conserved and linearly organized HOX gene
expression along the early body axis. Raff, instead, claimed
that the phylotypic stage is a developmental period character-
ized by strong interactions and developmental dependencies
across the whole embryo; thus, evolutionary modifications of
development at that stage are likely to be lethal (Galis and
Metz 2001). The relatively simple mechanisms of axis forma-
tion during earliest development, in contrast, are more prone to
evolutionary modification. During late development, when the
organs have started to develop, the organism is more “modu-
lar” and hence easier to modify locally (Wagner and Altenberg
1996).

The developmental hourglass represents a sort of mor-
phospace in which morphological characteristics of different
organisms are plotted in the course of their development. The
so-defined trajectories differ initially, converge at the phy-
lotypic stage, and eventually diverge again. More specifi-
cally, each horizontal cross section through the hourglass is
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Figure 9.
The developmental hourglass. (After Raff 1996)

a morphospace encompassing the phenotypic variability of
different organisms at the same developmental stage. Mor-
phological distances among specimens or species at early and
late stages are supposed to be larger than distances during
mid-embryonic stages. But it is unclear what the geometrical
structure of such a morphospace would be and if a consistent
notion of distance is warranted within each “cross-section,”
let alone across all developmental stages. Certainly, adult or
even late embryonic characteristics are not present at early
developmental stages. Limb morphology, as an example, can-
not be determined at the time of gastrulation, when the limb
buds have not started to develop yet. Similarly, at later stages
the phenotypes are already differentiated in a complex way
so that quantitative comparisons across species may be dif-
ficult. How to compare the beak of a chicken to the human
lips? Casting a specimen into a morphospace with a vector
structure requires one to specify all coordinates, i.e., the same
phenotypic measures need to be defined for all specimens be-
ing compared. Consequently, a morphospace encompassing
all this evolutionary and developmental diversity is unlikely to
be Euclidean or affine. There is also no straightforward way
to establish a metric when different variables are undefined
for different specimens. Furthermore, as pointed out above,
metrics like the Hamming distance are based on characteris-

tics that are meaningfully comparable within and across the
individuals (see Figure 6). Perhaps a morphospace underlying
the developmental hourglass may be topological or pretopo-
logical, if a reasonable classification can be devised at all.

However, for such a weak geometrical structure, no single
quantitative notion of distance may be applicable across the
full range of phenotypic variability that is typically covered by
the developmental hourglass. One cannot quantitatively relate
morphological similarities among organisms at the blastula
stage to the similarities at the time of somite formation, let
alone to the diversity among fetuses. What biologically mean-
ingful measure of similarity or distance could be applied at
all these levels of complexity? In fact, even a qualitative com-
parison of variability across these stages would be vague. The
developmental hourglass thus cannot be regarded as a valid
quantitative concept.3

Even as a metaphor, the hourglass may be misleading.
Variability at the phylotypic stage may be small but decisive,
already containing the properties that indicate or even induce
larger differences in subsequent developmental pathways, and
eventually leading to highly differentiated adult morpholo-
gies of different taxa. Based on similar arguments, Richardson
et al. (1997) even questioned the existence of a phylotypic
stage at all.

Fitness Landscapes
The eminent American population geneticist Sewall Wright
(1932) introduced the notion of fitness landscapes or adaptive
landscapes in an address at the Sixth International Congress
of Genetics. Wright’s landscapes were based on a genotype
space, or more specifically, on a space of allele combinations,
where a fitness or adaptiveness value was assigned to each
element of this space. In population genetics and game theory,
fitness landscapes are also used on a space of allele frequen-
cies or phenotype frequencies, so that a point on this land-
scape represents an entire population (Hofbauer and Sigmund
1998). In an attempt to synthesize genetical and paleontolog-
ical approaches, Simpson (1944) applied adaptive landscapes
to a space of phenotypic traits, which became the basis of
the statistical approaches in evolutionary quantitative genet-
ics (Arnold et al. 2001). The basic statement associated with
fitness landscapes or adaptive landscapes is that evolution pro-
ceeds toward the “peaks” in this landscape by natural selection.
Wright specifically introduced fitness landscapes to illustrate
the problem of local fitness optima (peaks), which are sepa-
rated by the areas of low fitness (valleys), so that evolution may
be trapped at a local maximum that is lower than an adjacent
peak. Wright concluded that genetic drift of small subpopu-
lations has to be crucial in escaping from suboptimal fitness
peaks—his shifting-balance theory, which has been subject to
heavy debates (see, e.g., Johnson 2008 for review).
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Figure 10.
(a) Wright’s 1932 diagram of a fitness landscape with several peaks and valleys. His original figure caption was, “Diagrammatic representation of the field of gene
combinations in two dimensions instead of many thousands. Dotted lines represent contours with respect to adaptiveness.” (b) A three-dimensional representation
of a simple adaptive landscape based on a two-dimensional phenotypic space. A population with a mean phenotype at the point A (and approximately uncorrelated
traits) tends to evolve toward the nearest peak B. However, fitness at the point C is higher than at B, but every path from B to C leads through a valley of low
fitness (peak-shift problem).

Formally, a fitness landscape (or adaptive landscape)
consists of

(1) a set X of configurations (genotypes or phenotypes),
(2) a notion of nearness, neighborhood, distance, or accessi-
bility, and
(3) a function f : X → R that assigns a real number—the
fitness or adaptiveness value—to each element.

The set X together with the geometric or algebraic struc-
ture on X forms the configuration space (Stadler 2002). A
fitness landscape on the genotype space can be related to the
fitness landscape on the phenotype space via the so-called
genotype–phenotype map, assigning each genotype to a phe-
notype or to a set of phenotypes (Alberch 1991; Wagner and
Altenberg 1996).

Fitness landscapes have remained highly influential until
today and may be the most widespread metaphor in evolution-
ary biology and genetics. They are used both in mathematical
modeling (Gavrilets 2004), and even more so in the graphical
description of various arguments in evolutionary biology (e.g.,
McGhee 2007). But there are a number of problems and confu-
sions associated with fitness landscapes, which we do not want
to reiterate here (see, e.g., Gavrilets 2004; Kaplan 2008; Pigli-
ucci 2008). The point we would like to emphasize is that the
usefulness and the meaningfulness of statements about fitness
landscapes partly depend on the geometrical and topological
properties of the underlying phenotype or genotype space.

When using fitness landscapes, it is often assumed (such
as in McGhee 2007) that the space on which a fitness function
is defined is essentially Euclidean, i.e., all notions associated
with distance and direction hold. As should be clear from
what we have argued for so far, this assumption will most
often be unwarranted. Already in the most benign cases of
morphospaces, the space will only be locally Euclidean as in
Kendall’s shape space. But fitness landscapes are often applied
in a macroevolutionary context to a large phenotypic diversity,

so that the underlying space would have a relatively weak
geometric structure, which may not warrant quantitative no-
tions of distance or direction at all. Wright (1988: 116) wrote
that the space which he envisioned for his fitness landscape
consists of genotypes that “are packed, side by side in a two-
dimensional space in such a way that each is surrounded by
genotypes that differ by only one gene replacement.” Appar-
ently, this relationship (which he adequately depicted by the
Hamming graphs as shown in Figure 7) cannot be mapped
onto a two-dimensional surface, let alone a Euclidean surface.
As we have seen, the space of nucleotide sequences is a metric
space without a vector structure, and more general genotype
configurations are described best by a pretopological space.

That is, in most realistic applications of fitness landscapes,
familiar properties like distance, direction, or length are not
warranted to characterize the geometry of the landscape or of
evolutionary trajectories on the fitness surface. However, cer-
tain concepts may still hold even for weak topological struc-
tures. As we have remarked above, in affine morphospaces the
concept of a point lying in between two points is fundamental
and invariant under affine transformations. For example, the
two fitness peaks B and C in Figure 10(b) can be identified as
peaks that are separated by a valley even under affine trans-
formation of the morphospace, such as rescaling or rotation
of the axes. While most concepts in quantitative genetics are
based on a state space equipped with a vector structure or on a
space of gene frequencies, the basic concepts related to fitness
landscapes can be formulated even for pretopological spaces
(Stadler 2002). Defining a peak as a point where all neighbors
have lower fitness, and mutatis mutandis for valleys, is based
only on the qualitative relationship of neighborhood. Accord-
ingly, the peak shift problem can be phrased as the problem of
evolving from genotype A to genotype B, when all possible
paths between A and B consist of at least one genotype with
a fitness lower than that of both A and B. Other properties of
fitness landscapes and genotype–phenotype maps can also be
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formulated when employing a pretopological structure only
(see, e.g., the discussion of RNA shape space above).

Summary

Morphospaces are mathematical spaces describing and relat-
ing the phenotypic configuration or the morphology of bio-
logical organisms. The distribution of phenotypes in such a
space may allow inferences about the pattern of phenotypic
relationships, which may not have been evident from a pair-
wise comparison of the phenotypes themselves. Our intuitive
concept of a space is usually based on Euclidean vector spaces
and gives rise to a language that includes statements about
distance, direction, angle, and length. However, most realistic
morphospaces are not Euclidean but have weaker geometrical
and algebraic structures. Ignorance about the actual proper-
ties of a morphospace may lead to an inappropriate use of this
space—as a metaphor and as a computational tool. We showed
that the biological notions that can be inferred from these
spaces differ profoundly across the range of possible topolo-
gies. In particular, we find that moving from local to global
comparisons among specimens—from microevolutionary to
macroevolutionary spaces—is accompanied by a significant
weakening of meaningful geometrical structure.

Landmark-based morphometrics gives rise to a Rieman-
nian shape space, which locally is Euclidean. Most classic
morphospaces are affine spaces, which have a vector structure
but no notion of a distance. Other spaces, such as sequence
space, may have a metric but no vector structure. Finally, the
most general sort of morphospace, like the skeleton space,
does not support a quantitative measure of similarity at all, but
may allow a qualitative notion of neighborhood or nearness
(topological or pretopological spaces). While landmark-based
morphometrics can only describe a relatively limited range of
phenotypic variability, a pretopological space can be based on
very general classification schemes that apply to a very large
range of diversity.

These geometrical properties of morphospaces may even
limit the meaningfulness of common metaphors, such as the
developmental hourglass, which typically covers a large range
of ontogenetic and phylogenetic variability. In contrast, the
core ideas related to fitness landscapes can also be formulated
in terms of neighborhood or accessibility and hence apply to
weak morphospaces as well.

Notes
1. McGhee (1999) emphasized the distinction between “empirical mor-
phospaces,” denoting the statistical constructs typically used in morphomet-
rics, and “theoretical morphospaces,” such as Raup’s space of coiled shells.
This distinction seems to originate mainly from a confusion between ordi-
nations and the morphospace itself. There are no mathematical differences
between empirical and theoretical morphospaces; basically, the applicabil-
ity of both spaces depends on the underlying topology. Differences between

the classical approaches in morphometrics and in theoretical morphology are
more in terms of how measurements are selected and the style of post hoc
interpretation of results (cf. Huttegger and Mitteroecker in preparation).

2. More formally, a pretopology on X can be defined by sets of neighbor-
hoods N (x) for each x ∈ X. N (x) is a neighborhood system if it meets the
following criteria:

(1) x ∈ N for all N ∈ N(x).

(2) If N1, N2 ∈ N(x), then N1 ∩ N2 ∈ N(x).

(3) If N1 ∈ N(x) and N1 ⊂ N2, then N2 ∈ N (x).

If N is the mapping that assigns the neighborhood system N (x) to
each x, then (X, N ) is called the pretopological space. The neighborhood
relationships can be represented by a directed graph, consisting of vertices
from each element to its neighbors. The structure of a pretopological space is
more local than the structure of a topological space. One can get a topological
space from a pretopological space by imposing more stringent requirements
on the neighborhood systems, e.g., by adding the following axiom:

(4) For all N ∈ N(x) there is an N ∈ N(x) such that N ∈ N(y) for all y ∈
N. For more details see, e.g., Stadler et al. 2001.

3. In an empirical study on the phylotypic stage, Bininda-Emonds et al.
(2003) circumvented the problem of homologous measurements by comparing
variability in the timing of homologous developmental events across different
ontogenetic stages, but ignored spatial variation among these developmental
processes or their products. This interesting approach hence covers only a
single dimension of the morphospace.
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