Cognitive Cyber-Physical Systems: Vision for AI Meets Control

Marine Robotics School 2023
Goa, India

Pramod P. Khargonekar

Department of Electrical Engineering and Computer Science
University of California, Irvine

22 November 2023
Outline

1. Context and Vision
2. Cognitive Cyber-Physical Systems
3. Technical Directions
4. Our Recent Work
5. Concluding Remarks

This presentation contains numerous hyperlinks (in blue) as pointers for further study and exploration.
How would the pioneers of cybernetics and AI envision the future of CPS?
CPS Properties

- Pervasive computation, sensing, and control
- Networked at multiple scales
- Dynamically reorganizing/reconfiguring
- High degrees of automation
- Dependable operation with potential requirements for high assurance of reliability, safety, security and usability
- With or without human interaction/supervision
- Conventional and unconventional substrates/platforms
- Range from the very small to the large to the very large

Source: NSF
Aspirational and Emerging Applications

▶ Smart-X
1. Smart manufacturing
2. Smart grid
3. Smart transportation
4. Smart cities
5. Smart health

▶ Autonomous systems
1. Unmanned air vehicles
2. Self-driving cars
3. Autonomous robots

Human individual and group behavior and their interactions with technological systems are central in many of these applications:

Smart Cyber-Physical-Human Systems (CPHS)
Smart-X: Conceptual View

- Sensors
- Communications
- Internet-of-things
- Automation
- Data analytics
- Machine learning/Al
- Control/Decisions
- Software Architectures
- Cybersecurity
- Cloud/Edge Computing
Cognitive Cyber-Physical Systems
Marr’s 3 Levels of Analysis and Cognitive Science

Goal/Function (Computational)

Algorithm and Architecture

Implementation

Cognition - Definitions and Characteristics

▶ “All processes by which the sensory input is transformed, reduced, elaborated, stored, recovered, and used.” — Neisser, Cognitive Psychology, 1967.

▶ **Important role of evolutionary processes in cognition**: genomes, brains, minds, cultures, . . .

▶ **Salient cognitive functions:**
 1. Perception
 2. Attention
 3. Memory
 4. Reasoning
 5. Problem solving
 6. Knowledge representation

Cognitive Psychology, Neisser (1967)
Cognitive CPS - Key Principles

- Working Definition: CPS that have *cognitive functions and capabilities*.
- CPS can be explicitly designed and/or can learn (or evolve) to possess cognitive functions.
- Need for specific cognitive functions and capabilities will depend on the problem.
- Cognitive CPS’s may learn from each other, from humans, and also form collaborative networks.
- Cognitive CPS may be better able to augment humans and lead to human flourishing.

Hypothesis: Cognitive CPS concept offers the most expansive and ambitious program for integrating ML/AI with CPHS for realizing Smart-X Systems.
Computational Intelligence: Pattern Recognition or Model Building

- Two fundamentally different perspectives on learning from data:
 - Statistical pattern recognition from data for prediction and control.
 - Use prior knowledge and data to build causal models to understand, predict and control.

- It is possible to combine these two approaches.

- Causality a critical issue in learning from data.
Cognitive Fidelity, Biological Fidelity, and Model Complexity

Cognitive Computational Neuroscience, Kriegeskorte and Douglas (2018)
Symbolic vs. Neural Connectionist Approaches

- Historical and ongoing debate on the nature of human cognition and the structure of the brain.
- Key topic in cognitive science: neuroscience, ML/AI, psychology, linguistics.
- Three major components:
 - Computational logic systems
 - Connectionist neural network models
 - Models and tools for uncertainty
- Pragmatic approach: combine connectionist, logic and probabilistic approaches to achieve desired system goals and objectives.

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation, Besold et al. (2017)
Cognitive Models

- Production systems (Newell and Simon):
 1. If-then rules, logic, symbols
 2. Goals and subgoals, conflict resolution mechanisms
 3. Example: ACT-R, SOAR

- Reinforcement learning based models
 1. Actions, states, rewards
 2. Perception and motor modules
 3. Value and policy based approaches
 4. Three modes: Model-free, model-based, and episodic
 5. Brain combines all three of these modes but it is not known how this is done.

- Bayesian probabilistic models
Free Energy Principle

- **Overarching unifying principle** for brain function due to K. Friston.
- Brain seeks to minimize surprise.
- Bayesian brain hypothesis: brain has an internal model that allows for computation of state estimate from sensory observations using Bayes rule.
- Agent chooses action policy to maximize “information gain” (KL divergence or relative entropy).
- Free energy principle: minimize expected free energy under future observations and future states.
- Connections to statistical mechanics, predictive coding, risk sensitive control, …

Deep learning is revolutionizing perception.

Compositionality is built-in.

Examples of very impressive progress in:
 - Computer vision
 - Speech recognition and processing
 - Language translation

Architectures:
 - Convolutional neural networks
 - Long Short Term Memory (LSTM) recurrent neural networks
 - Transformers
Perception in CPS

- CPS with multiple, distributed sources of sensed information.
- Immediately possible to leverage DL advances.
- Prior knowledge plays a very large role in cognitive theories of perception.
- Neural network techniques could be combined with relational prior knowledge for improved context awareness in sensor rich CPS.
- Potential tools and techniques for relational priors:
 1. Neural networks with symbolic front ends.
 2. Inductive biases, deep learning, and graph networks.
Computational Models of Attention

- Vision (human, robot, driving) has been a major focus for modeling of attention.
- Feature integration theory, guided search model, CODE theory of visual attention, signal detection theory, . . .
- Computational models:
 1. Itti’s model: color, intensity, orientation
 2. Bayesian models of attention
 3. Decision theoretic models
 4. Information theoretic models
 5. Graphical models
 6. Spectrum analysis models
Attention in ML

- Attention is the key to focusing on the most relevant information from multiple distributed sources of information.

- Examples:
 - Effective Approaches to Attention-based Neural Machine Translation, Luong et al. (2015).
 - Attention is all you need, Vaswani et al (2017).
Role of Attention in CPS

- Two levels of attention:
 - First level - selection and focus on a particular task.
 - Second level - top-down search for relevant information.
- Attention for detecting changing conditions and contexts.
- Attention for fault detection and/or resilience.
- Attention models that are hierarchical and programmable will be required for CPS.
- Examples of programmable attention:
 1. Attention is all you need (Transformer).
Memory

- Memory is central to learning and intelligent behavior.
- Multiple memory mechanisms in human cognition:
 - short-term
 - long-term
 - episodic (content-addressable)
 - semantic
- LSTM - excellent example of use of memory in machine learning.
- Experience replay - a key innovation in Deep RL breakthroughs.
- Differentiable neural computer by Graves et al. (2016).
- Sparse distributed representations. Examples: hierarchical temporal memory, sparsey.
Differentiable Neural Computer

Hybrid computing using a neural network with dynamic external memory, Graves et al. (2016)
Figure 3: The MAC cell architecture. The MAC recurrent cell consists of a control unit, read unit, and write unit, that operate over dual control and memory hidden states. The control unit successively attends to different parts of the task description (question), updating the control state to represent at each timestep the reasoning operation the cell intends to perform. The read unit extracts information out of a knowledge base (here, image), guided by the control state. The write unit integrates the retrieved information into the memory state, yielding the new intermediate result that follows from applying the current reasoning operation.
Example of Memory in CPS: Episodic Control

- Episodic control - re-enact successful episodes from memory storage.
- Episodic control has potential relevance to “small data” learning and control.
- Example: Model-free episodic control, Blundell et al. (2016).
- Model-free episodic control – recorded experiences are used as value function estimators.
- Neural episodic control – combining deep learning model and lookup tables of action values.
- Hierarchical episodic control – episodes as options.
Selected Methodological Challenges

There are numerous major technical challenges:

- Approaches for combining model-based and model-free techniques.
- Approaches to combine hierarchical and distributed architectures and algorithms.
- Reducing the need for large amounts of data: few-shot learning, one-shot learning.
- Bringing meta learning paradigm into cognitive CPS: “learning to learn”.

Combining Model-based and Model-free Approaches

► Examples of Current Approaches
 1. Model predictive control and reinforcement learning – compute action sequence based on the model via MPC (model based), update the model via reinforcement learning and supervised learning.
 2. Guided policy search – robust local policies are derived from local linear models; these local policies used to efficiently guide a global policy.
 3. Safe model based reinforcement learning

► Unexplored: Model free ML based approaches for sensing, perception, memory and model-based for planning, safety and closing the loop.
Hierarchical Control

- Hierarchical structures appropriate and necessary for control and management of Smart-X.
- Optimal behavioral hierarchy, Solway et al. (2014).
- Hierarchical control as a natural framework for compositional learning in Smart-X.
- Hierarchical control and learning at multiple scales in time and space. Examples:
 - Options framework in RL/MDP.
 - Feudal RL and hierarchies.
 - MAXQ framework and value function decomposition.
Our Recent Work

- Memory and attention for learning and control
- Theoretical analysis for online learning and control
- Perception in automated driving
- Cognitive manufacturing
- Applications to power grid problems
- Empathetic AI
- List of publications at the end
Cognition: Memory and Preadaptation

- External memory architectures and algorithms for adaptive control
 - External memory augmented to neural network.
 - Short term memory with quick update feature.
 - Performance: significant improvement in adaptation.
 - Theoretical guarantees for signal estimation problem.
 - Attention models in neural adaptive control.
Online Learning and Optimization

- Regret guarantees for online learning for control.
 - Sub-linear dynamic regret guarantees for unknown time-invariant systems.
- Online matching algorithms with applications to smart grids
 - Customers with dynamic willingness to pay.
 - Key idea: online matching by criticality (rate of decrease of willingness to pay) of currently active customers.
 - Novel competitive ratio guarantees in terms of uncertainty in the market.
- Online algorithms for network robustness.
Online matching heuristics could be sub-optimal.

Reinforcement learning can learn optimal online policies.

Challenges:
- Large action space.
- Constraints: network flow constraints, voltage security constraints etc.
- Reinforcement learning can converge to sub-optimal solutions.

Our work: a scalable reinforcement learning algorithm for the matching problem in smart grids.
Anomaly detection in smart grids and manufacturing.
- Architectures based on Sparse Representations (Hierarchical Temporal Memory).
- Demonstrably learns very efficiently, just in one-pass.
- Key observation: performance better or comparable to LSTMs trained with multiple passes.

Graph learning techniques in AV decision making:
- Problem studied: prediction of vehicle collision.
- Architecture: perception \rightarrow relation graphs \rightarrow graph processing \rightarrow LSTM \rightarrow spatio-temporal embedding \rightarrow prediction.
- Improved accuracy compared to CNN architecture. Improved efficiency of learning. Implementable on AV hardware.
- Ongoing work: fast and safe planning using SOS programming.

Cognitive manufacturing and graph learning
Meta Learning Paradigm

- **Meta learning** as a paradigm for dealing with new environments by “learning to learn efficiently and effectively”.
- Meta learning idea has been explored in ML since the mid 80’s.
- **Meta learning in nature and humans**
- **Two possible approaches**
 - First approach: learn the common structures across the tasks to induce a strong prior or “inductive bias” — Bayesian inference
 - Second approach: two-level optimization framework:
 - Inner optimization optimizes the task at hand.
 - Outer optimization optimizes the parameters of the inner optimization.
- **Our work**: meta-learning algorithm for a control setting.
Control Task (Adversarial Setting)

- The task is an online control task, where the controller will have to adapt online in the face of uncertainties in the disturbances and cost functions (both of which can be arbitrary) to optimize the performance of the system.

- Let t denote the time index within a task. The system to be controlled in the control task is a linear dynamical system:

 $$ x_{t+1} = Ax_t + Bu_t + w_t. $$

 Here, w_t is the disturbance in the dynamics. The disturbances are arbitrary.

- Assumption: A, B are known and only x_t is observable.
Cost Setting

- The cost function $c_t(x_t, u_t)$ for time t is arbitrary and unknown apriori.
- Like in online optimization the assumption is that the cost function is revealed just after time t.
- Under the above information setting, the control objective is to minimize the total cost, i.e.,

$$\min \sum_{t=1}^{T} c_t(x_t, u_t)$$
Control action can only be tuned using the information observed thus far.
Online Meta-Learning Setting

- The controller is subjected to a sequence of tasks τ_1, τ_2, \ldots one after the other.
- The setting in each task τ_i is adversarial as defined above.
- The system in each task and the disturbances and cost functions can vary. This is what makes the problem of learning across tasks challenging.
- The objective of the meta learning online controller is to minimize the average total cost across the tasks.
Meta-Learning Control Architecture

Outer Loop: Meta Learner

Meta-Update

Meta-Loss, \mathcal{L}_i

Inner Loop: Task Specific OC Algorithm

Policy Update

System

Control Policy

$x_{i,t+1}$

$u_{i,t}$
Control Policy: Disturbance Response Control

- **Disturbance Response Control** is a **linear feedback of the disturbances up to a certain history** H:

 $$u_t = \pi(x_t, w_{t-1:t-H}; M_t) = -Kx_t + \sum_{k=1}^{H} M_t^{[k]} w_{t-k}.$$

 - The stabilizing control $-Kx_t$ and the disturbance feedback $\sum_{k=1}^{H} M_t^{[k]} w_{t-k}$.

- Since the system is known, the assumption is that the stabilizing gain can be computed apriori.

- To optimize the performance of the control policy online the parameters $M_t^{[1:H]} = [M_t^{[1]}, \ldots, M_t^{[H]}]$ can be tuned with the information gathered at every step along the way.
Task Specific Online Learning

▶ We denote $M_{t}^{[1:H]}$ succinctly by M_{t}.

▶ M_{1} is initialized by the meta-learner’s output, i.e.,

$$M_{1} = M^{m}.$$

▶ Let \mathcal{M} denote the set from which the policy parameters are drawn.

▶ In the online update, the parameter M_{t} is updated by the gradient of the cost that would have been incurred at t had M_{t} been used throughout.

▶ **Task Specific Online Update:**

$$M_{t+1} = \text{Proj}_{\mathcal{M}} (M_{t} - \eta \nabla_{M_{t}} c_{t}(s_{t}, a_{t})),$$

$M_{1} = M^{m}$ (meta-learner’s initialization),

$s_{t} =$ state under the fixed policy M_{t} with $x_{t-H} = 0$, $a_{t} = \pi_{t}(s_{t}, w_{t-1:t-H})$.
Meta-learning Update

- Let M_i^*: optimal disturbance gain M in task i. This optimal gain can be computed at the end of task i.
- The meta update is by a correction proportional to the difference between the optimal M_i^* and the initialization M_i^m.
- **Meta-Learning Update:**

\[
M_{i+1}^m = \text{Proj}_M (M_i^m + 1/i (M_i^* - M_i^m)).
\]

- The step rate η is also a meta-parameter and also will have to be updated. Please see the Arxiv version of the paper for details.
Notation

- R_T: Performance regret with respect to best $\pi(\cdot; M^*)$, M^*: Optimal disturbance gain for the task.

- R_{meta}: Average of R_T across N tasks.

- $D = \text{diameter}(\mathcal{M})$.

- D^*: Diameter of the smallest region \mathcal{M}^* within which the optimal disturbance gain M^*'s of the sequence of tasks lie, which (the region) is clearly unknown apriori. If the tasks are similar then clearly $D^* \ll D$.

![Diagram showing \mathcal{M}^*, \mathcal{M}, D, and D^* with the relationship $D^* \ll D$.]
Performance Guarantee

▶ Without meta-learning:

\[R_T = \mathcal{O}(D) T^{1/2}. \]

▶ With meta-learning:

\[R_N^{\text{meta}} = \mathcal{O} \left(\frac{\log(N)}{N} + D^* \right) T^{1/2}. \]

▶ That is, after a sufficiently large number of tasks, the per task regret improves by a factor \(D/D^*. \)
Numerical Illustration

While the independent learning Online Control’s (OC) performance does not improve with experience (number of tasks experienced thus far), the meta-learning OC continuously improves.

\[R_{N}^{\text{meta}} \] versus the number for tasks \(N \).
Contributions

- First online guarantee for meta-learning in a control setting.
Publications for More Details

Concluding Remarks

- Cognitive CPS as a vision for the next frontier in CPS
- Cognitive CPS can provide a framework for integrating ML/AI into CPS
- Architectures and algorithms inspired from computational neuro- and cognitive science have great potential for cognitive CPS
- Cognitive CPS can enable smart-X systems for societal benefits
Thank you!

email: pramod.khargonekar@uci.edu
website: https://faculty.sites.uci.edu/khargonekar/