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Inspiration

Deep Learning (DL):
e Dominant performance in multiple machine learning areas:
Speech, language, vision, face recognition, etc.
e Replaces time consuming typical hand-tuned machine learning methods

Key Breakthroughs in establishing Deep Learning:
e Optimization methods: Stochastic Gradient Descent, Hessian-free, Nestorov’s momentum, etc.
 Deep recurrent neural network (RNN) architectures: deep stacked RNN, deep bidirectional

RNN, etc.
e RNN Modules: Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM)

e Automatic gradient computation
e Parallel computing

Connecting Deep Learning to Control:
e Guided Policy Search — uses trajectory optimization to assist policy learning (S. Levine and V.

Koltun, 2013)
e Hessian-free Optimization— deep RNN learning control with uncertainties (. Sutskever, 2013)
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DLC Limitations and Research Goals

Policy Search/Deep Learning (DL) Control Limitations:

Large number of computations at each time step

No standard training procedures for control tasks

Few analysis tools for deep neural network architectures
Non-convex form of optimization provides few guarantees
Lack of research in optimization with regards to robustness

Most RL approaches use the combination of modeled dynamics and real-life trial to tune policy (not
useful for flight control)

Research Goals

Develop a robust deep recurrent neural network (RNN) controller with gated
recurrent unit (GRU) modules for a highly agile high-speed flight vehicle that is
trained using a set of sample trajectories that contain disturbances, aerodynamic
uncertainties, and significant control attenuation/amplification in the plant
dynamics during optimization.
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Direct Policy Search Background

Reinforcement Learning (RL):

Develop methods to sufficiently train an agent by maximizing a cost
function through repeated interactions with its environment.
Markovian Dynamics

Xep1 = [ up) +w, Xo~p(Xo)
Find Parametrized Policy (rg) for the finite horizon problem:

* t

Ty = argmaxq,Jo = argmaxyE,. v Elr(x,u)lnel, v €[01]

Certainty-Equivalence (CE) Assumption:

The optimal policy for the learned model corresponds to the optimal policy
for the true dynamics

How to use models for long-term predictions:

1. Stochastic inference (i.e. trajectory sampling)
2. Deterministic approximate inference

- *M. P. Deisenroth, et al., “A survey on policy search for robotics,” Foundations and Trends in Robotics, vol. 2, 2013.
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Direct Policy Search Background

Stochastic Sampling:
Expected long-term reward:

Jo= argmaxyZ,L v Elr (xe, ue) o]
Approximation of Jg:

Jo =3Il lyrd) lim Jo = Jo

Deterministic Approximations:

Approximation of p(x;): (e.g. Unscented Transformation or Moment Matching)
FlrGre ol = [ r(xop(rod,

p(xe) = N(xe|uf, 2F)

- *M. P. Deisenroth, et al., “A survey on policy search for robotics,” Foundations and Trends in Robotics, vol. 2, 2013.
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Deep Learning based Flight Control

Yemd Yref
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Deep Learning Training Architecture

Generalized Form of the Discrete Plant Dynamics
X; are the states of the plant

rii1 = [y, ()\u(u.‘;“d + pu)) + dus pas pg) + u@t is the actuator output
¢ y; is the output vector
ye = fl@en Qu(ug™ +pu)) + du, pﬂ’pq} o C?:‘ Z; is the plant noise

Ay is the control effectiveness
d,, is an input disturbance
Pu» Pa» Pq @re uncertainty parameters

‘o

CNIVERSITY of
Distribution A: Approved for public release; distribution is unlimited. UF FLORIDA

The Foundation for The Gator Nation



Flight Vehicle Model

Longitudinal Rigid Body Dynamics: Force and Moment Equations:
. 1 |- X
Vi = —(Tcos(a) - D)~ gsin(0 —a) A =~ $oVrS5Ca [, = Necos(a) — Asin(a)
1 .
& = ——(-Tsin(@)-L)+q+Leos-a) N =~ 5pV7SCy D = Nsina)+ Acos(a)
?HVT VT %
0 = q M = —ijgScreme
.M 2
T Ty z=[Vr,a 0,4,k Aerodynamic Coefficients (Longitudinal):
h = Vrsin(—a) Y= [ﬂ:; q, Az: fi'] Ca = Ca,yplhy M)+ Cy,,(c. M)

4
+ Z Cﬁ.ai (Cl’= ﬂi{: 51)
i=1

10§

4
Cy = Cyy(a, M)+ Cy, (a, M, )

54 i=1
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g ™ Co = Cupla. M)+ Cpy (o, M, 5)
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Deep Learning Controller - Architecture

Stacked Recurrent Neural Network (S-RNN)

Algorithm 1 Gated Recurrent Units (GRU)
I z=0(c,U" 4+ 5,_{W" +by)
2 r=0(c;U" + 5,1 W" + bo)
3: h = tanh(c; U™ + (si_1 * 7)W" + by)
4.
5

sg=(1—z)xh+2%*s_1
* represents element-wise multiplication

ur = S¢V + ¢

®; matrix of parameters for each GRU module
®; = [UY, W+, Uur,W", UM W by, b,, bs]

O total parameters of the controller

0 =[04,0,,..,0,,V,c]

L total layers of GRU modules

Controller Input Vector:

¢t =lei,a,q,q - Yre
t [ »a,q, CI] Mb Oracle —fb
€ = Ysel — Yemd

t .
e; = fe dt —'ycmd Plant 4 >
L RNN »| Actuator —» ant
0 u U, | Dynamics [—p( )_x L 5
X

UNIVERSITY of
Distribution A: Approved for public release; distribution is unlimited. UF FLORIDA

The Foundation for The Gator Nation



Deep Learning Controller - Optimization

Estimated Expected Long-Term Reward: TABLE 1
1 RANGE OF INITIAL CONDITIONS AND UNCERTAINTY VARIABLES
~ L
J(0) = 5 2i=1Ji(©) | TMIN [ MAX | [ | MIN | MAX |
. . . apldeg] -25 25 R, | -0.5 0.1
Cost function for each trajectory, i: oldegiec] | 75 | 75 R, | 7 3
tr ¢ Machgp 1.0 2.0 R -3 5
Ji(@) =X, v x(xe, up) aliglkm] | 7 | 14 | [A | 025 | 30
t=0
label = P: only uncertainties [Ra' Ry Ry, Au]Nuniform[mm, max]
label = R: uncertainties, noise, and disturbances [sz.PcipPziu /151] are uncertainties (ith trajectory)
N is the number of sampled trajectories
Instantaneous Measurement: t¢ is the duration of each sampled trajectory
kletz + sz.z if label = P ki, k,, k3, k, are positive constant gains
— u ]
x(epup) = Ko f2 4k, £2 £ label = R b., by are static constant bounds of the funnel
3fe 4fu lf apet = €t = Ysel — Yref
fe = maX(letl - be’ O) Yemd Yref
. — Oracle |—»
fu = max(|ug| — by, 0)
Yemd y
1 1 7 RNN Actuator Plant >
T|me‘va ry'ng funnel I—h u gee| Dynamics _;®?_>
X
Bu(t) = {x € R"U(x, t) < by(t)}
:Be(t) ={x e R"E(x,t) < be(t)}
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DLC - Incremental Training

Algorithm 2 Incremental Training Procedure Optimization Specifications:
I: Randomly initialize controller parameters (©)
2: STEP 1: Optimize © for RNN/GRU using cost function RNN/GRU, RNN, TD-FNN
(21) with linear dynamics and labels=P L-BFGS (Quasi-Newton) Optimization

3: STEP 2: Re-optimize © using nonlinear dynamics, la-
bels=P, with small uncertainties in aerodynamics i )

4: STEP 3: Re-optimize © using nonlinear dynamics, la- N =2,970 Sample Tra'Jector.les
bels=(R.P), with uncertainties, disturbances, and noise 540 Performance Trajectories

2,430 Robust Trajectories

3.1 GHz PC with 256 GB RAM and 10 cores
Parallel Processing

~40 hours for 1,000 sample trajectories for
optimization

Yemd Yref
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Flight Condition:

DLC - Results

Initial Conditions:

Mach

a (deg)

g (deg/sec)

Altitude (km)

1.7

0

0

14

e =

& =

O — Qeomgd

Augmented polynomial short period model:

f{ﬂ: Q'.- 56'.- Pc:: pq: Pua )‘H)
fla, q, de, pas pgs Pus Au)
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MIN | MAX
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A 0.25 3.0

v

=

ERSITY of

UF FLORIDA

The Foundation for The Gator Nation



DLC - Results

Flight Condition: Initial Conditions:

Mach | a (deg) | ¢ (deg/sec) | Altitude (km) MIN | MAX
- — ap(deg) -30 30
L7 0 0 14 qo(deg/sec) | -100 100

Augmented polynomial short period model: R, -0.5 | 0.1
R, -7 5
€] = O — Copnd R, -5 5

dl = f{ﬂ:’ Q'.- 66-.- Pa: pq: puw )\u} i‘\u 0.25 3.0

Q" - fl:ﬂ:': q, 56% pﬂ: F}q: 10111 )\u}

Performance Metrics: TABLE 11

CUMULATIVE ERROR (CTE), cONTROL RATE (CCR), AND FINAL COST

1 t
ATE =<3 27 el
N =
| [ CTE | CCR | Cost |

1 t
ACR =—3N % fllutl 3-Layer RNN/GRU | 339.15 | 100.16 | 1.0438
J-Layer RNN 35008 | 313.64 | 2.4970
CTE = %/L, ATE GS 100021 | 1180.04 | -
M
CCR = Z 1ACR I DLC Performance: 66% reduction in CTE, 91.5% reduction in CCR I

N number of trajectories for each analysis model
ts is the duration of each sampled trajectory

CTE is the cumulative tracking error
- CCR is the cumulative control rate
ERSITY of
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DLC - Results

Flight Condition:

Mach

a (deg) | ¢ (deg/sec) | Altitude (km)

1.7

0 0 14

e =

& =

alpha (deg)

Augmented polynomial short period model:

O — Qeomgd

f(ﬂ:': Q: 56:* PCI: pq: pu: )‘H)
f(&: {I: 5\‘3: PCI: pf;‘: pu: )\H)

Gain Scheduled Controller

0.5 1 1.5 2
time (sec)

alpha (deg)

Ay = 0.5, pu = 0, pa = 0.05. and pg = 2.5

Initial Conditions:

MIN | MAX
ap(deg) -30 30
qo(deg/sec) | -100 | 100
R, -0.5 0.1
R, 7| s
R, -5 5
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Deep Learning Controller

0.5

:
time (sec)

1.5

Distribution A: Approved for public release; distribution is unlimited.

UF FLORIDA

The Foundation for The Gator Nation



DLC - Results

Gain Scheduled Controller
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Contribution and Conclusion

* Created a novel training procedure focused on bringing deep
learning benefits to flight control.

e Trained controller using a set of sample trajectories that
contain disturbances, aerodynamic uncertainties, and
significant control attenuation/amplification in the plant
dynamics during optimization.

e We found benefits of using a piecewise cost function that
allows the designer to solve both robustness and
performance criteria simultaneously.

e We utilized an incremental initialization training procedure
for deep recurrent neural networks.
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Future Work

e Pursue a vehicle model with flexible body effects, time delays,
controller effectiveness, center of gravity changes, and
aerodynamic parameter variations.

e Explore improving parameter convergence and analytic
guarantees: Kullback-Leibler (KL) divergence, importance
sampling, etc.

e Pursue development/use of robustness analysis tools for
deep learning controllers to provide region of attraction
estimates and time delay margins: sum-of-squares
programming etc.
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Questions?
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