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Inspiration 

Deep Learning (DL): 
• Dominant performance in multiple machine learning areas:  
 Speech, language, vision, face recognition, etc. 
• Replaces time consuming typical hand-tuned machine learning methods 
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Key Breakthroughs in establishing Deep Learning: 
• Optimization methods: Stochastic Gradient Descent, Hessian-free, Nestorov’s momentum, etc. 
• Deep recurrent neural network (RNN) architectures: deep stacked RNN, deep bidirectional 

RNN, etc. 
• RNN Modules: Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM) 
• Automatic gradient computation 
• Parallel computing 

 

Connecting Deep Learning to Control: 
• Guided Policy Search – uses trajectory optimization to assist policy learning (S. Levine and V. 

Koltun, 2013) 
• Hessian-free Optimization– deep RNN learning control with uncertainties (I. Sutskever, 2013) 

 



DLC Limitations and Research Goals 

Policy Search/Deep Learning (DL) Control Limitations: 
• Large number of computations at each time step 
• No standard training procedures for control tasks 
• Few analysis tools for deep neural network architectures 
• Non-convex form of optimization provides few guarantees 
• Lack of research in optimization with regards to robustness 
• Most RL approaches use the combination of modeled dynamics and real-life trial to tune policy (not 

useful for flight control)  
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Develop a robust deep recurrent neural network (RNN) controller with gated 
recurrent unit (GRU) modules for a highly agile high-speed flight vehicle that is 
trained using a set of sample trajectories that contain disturbances, aerodynamic 
uncertainties, and significant control attenuation/amplification in the plant 
dynamics during optimization. 

Research Goals 



Direct Policy Search Background 

Adaptive Controller: Longitudinal Short-Period Dynamics for High-Speed Flight 
Vehicle: 

Adaptive Controller: 
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𝑥𝑡+1 = 𝑓 𝑥𝑡,𝑢𝑡 + 𝑤,      𝑥0~𝑝(𝑥0) 

𝜋Θ∗ = 𝑎𝑎𝑎𝑎𝑎𝑥𝜋Θ𝐽Θ  =  𝑎𝑎𝑎𝑎𝑎𝑥𝜋Σ𝑡=1
𝑡𝑓 𝛾𝑡𝐸 𝑟 𝑥𝑡,𝑢𝑡 𝜋Θ ,          𝛾 ∈ [0,1]     

Markovian Dynamics 

Find Parametrized Policy (𝜋Θ∗ ) for the finite horizon problem: 

Certainty-Equivalence (CE) Assumption: 
The optimal policy for the learned model corresponds to the optimal policy 
for the true dynamics 

How to use models for long-term predictions: 
1. Stochastic inference (i.e. trajectory sampling) 
2. Deterministic approximate inference 

*M. P. Deisenroth, et al., “A survey on policy search for robotics,” Foundations and Trends in Robotics, vol. 2, 2013. 

Adaptive Controller: 

Reinforcement Learning (RL): 
Develop methods to sufficiently train an agent by maximizing a cost 
function through repeated interactions with its environment.  



Direct Policy Search Background 

Adaptive Controller: 

Stochastic Sampling: 
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 𝐽Θ= 𝑎𝑎𝑎𝑎𝑎𝑥𝜋Σ𝑡=1
𝑡𝑓 𝛾𝑡Ε[𝑟(𝑥𝑡,𝑢𝑡)|𝜋Θ] 

Expected long-term reward:  

Adaptive Controller: 
 𝐽Θ� = 1

𝑁
Σ𝑖=1𝑁 Σ𝑡=1

𝑡𝑓 𝛾𝑡𝑟(𝑥𝑡𝑖)                      lim
𝑁→∞

𝐽Θ� = 𝐽Θ 

Approximation of  𝐽Θ: 

Adaptive Controller: 

Deterministic Approximations: 

𝐸 𝑟 𝑥𝑡,𝑢𝑡 |𝜋Θ = �𝑟 𝑥𝑡 𝑝 𝑥𝑡 𝑑𝑥𝑡 

𝑝 𝑥𝑡 ≅ Ɲ 𝑥𝑡|𝜇𝑡𝑥 , Σ𝑡 
𝑥  

 

Approximation of 𝑝 𝑥𝑡 :    (e. g. Unscented Transformation or Moment Matching) 

*M. P. Deisenroth, et al., “A survey on policy search for robotics,” Foundations and Trends in Robotics, vol. 2, 2013. 



Deep Learning based Flight Control 
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Deep Learning Training Architecture 

𝑥𝑡 are the states of the plant  
𝑢𝑡𝑎𝑎𝑎 is the actuator output 
𝑦𝑡  is the output vector 
𝜁𝑝 is the plant noise 
𝜆𝑢 is the control effectiveness 
𝑑𝑢 is an input disturbance 
𝜌𝑢,𝜌𝛼 ,𝜌𝑞  are uncertainty parameters 
 
 
 

Generalized Form of the Discrete Plant Dynamics 



Flight Vehicle Model 
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Longitudinal Rigid Body Dynamics: Force and Moment Equations: 

Aerodynamic Coefficients (Longitudinal): 



Deep Learning Controller - Architecture 
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Stacked Recurrent Neural Network (S-RNN) 

𝑐𝑡 = [𝑒𝑖 ,𝛼, 𝑞, 𝑞�] 
𝑒 = 𝑦𝑠𝑠𝑠 − 𝑦𝑐𝑐𝑐  

𝑒𝑖 = � 𝑒
𝑡𝑓

0
𝑑𝑑 

 
Θ𝑖   matrix of parameters for each GRU module 
Θ𝑖 = 𝑈𝑢,𝑊𝑢,𝑈𝑟 ,𝑊𝑟 ,𝑈ℎ,𝑊ℎ,𝑏1, 𝑏2, 𝑏3   
Θ  total parameters of the controller 
Θ = [Θ1,Θ2, … ,Θ𝐿 ,𝑉, 𝑐]  
𝐿 total layers of GRU modules 

Controller Input Vector: 



Deep Learning Controller - Optimization 
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𝐽(Θ) =
1
𝑁
Σ𝑖=1𝑁 𝐽𝑖(Θ) 

Estimated Expected Long-Term Reward: 

Cost function for each trajectory, i: 

𝑙𝑙𝑙𝑙𝑙 = 𝑃:  only uncertainties 
𝑙𝑙𝑙𝑙𝑙 = 𝑅: uncertainties, noise, and disturbances 

𝐽𝑖(Θ) = Σ𝑡=0
𝑡𝑓 𝛾𝑡𝜒 𝑥𝑡,𝑢𝑡  

𝑅𝛼,𝑅𝑞,𝑅𝑢,Λ𝑢 ~𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑚𝑚𝑚,𝑚𝑚𝑚  
[𝜌𝛼𝑖 ,𝜌𝑞𝑖 ,𝜌𝑢𝑖 , 𝜆𝑢𝑖 ] are uncertainties  (ith trajectory) 
𝑁 is the number of sampled trajectories 
𝑡𝑓 is the duration of each sampled trajectory 
𝑘1,𝑘2,𝑘3,𝑘4  are positive constant gains 
𝑏𝑒 ,𝑏𝑢̇    are static constant bounds of the funnel 
𝑒𝑡 = 𝑦𝑠𝑠𝑠 − 𝑦𝑟𝑟𝑟  
 
 
 

Instantaneous Measurement: 

Time-varying funnel: 

𝜒 𝑥𝑡,𝑢𝑡 = �
𝑘1𝑒𝑡2 + 𝑘2𝑓𝑢̇2      𝑖𝑖 𝑙𝑙𝑙𝑙𝑙 = 𝑃
𝑘3𝑓𝑒2 + 𝑘4𝑓𝑢̇2      𝑖𝑖 𝑙𝑙𝑙𝑙𝑙 = 𝑅

 

𝑓𝑒 = max 𝑒𝑡 − 𝑏𝑒 , 0  
𝑓𝑢̇ = max (|𝑢𝑡|̇ − 𝑏𝑢̇, 0) 

𝛽𝑢̇ 𝑡 = 𝑥 ∈ ℝ𝑛 𝑈 𝑥, 𝑡 ≤ 𝑏𝑢̇ 𝑡  
𝛽𝑒 𝑡 = 𝑥 ∈ ℝ𝑛 𝐸 𝑥, 𝑡 ≤ 𝑏𝑒 𝑡  



DLC – Incremental Training 
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Optimization Specifications: 

RNN/GRU, RNN, TD-FNN 
L-BFGS (Quasi-Newton) Optimization 
 
N = 2,970 Sample Trajectories 
540 Performance Trajectories 
2,430 Robust Trajectories 
 
3.1 GHz PC with 256 GB RAM and 10 cores 
Parallel Processing 
~40 hours for 1,000 sample trajectories for 
optimization 
 
 
 
 
 



DLC - Results 
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Initial Conditions: 

Augmented polynomial short period model: 

Flight Condition:  



DLC - Results 
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𝐴𝐴𝐴 = 1
𝑁
Σ𝑖=1𝑁 Σ𝑡=1

𝑡𝑓 𝑒𝑡    

𝐴𝐴𝐴 =
1
𝑁Σ𝑖=1

𝑁 Σ𝑡=1
𝑡𝑓 𝑢𝑡̇  

𝐶𝐶𝐶 = Σ𝑗=1𝑀 𝐴𝐴𝐴 
𝐶𝐶𝐶 = Σ𝑗=1𝑀 𝐴𝐴𝐴 

Initial Conditions: 

Augmented polynomial short period model: 

Performance Metrics:  

𝑁 number of trajectories for each analysis model 
𝑡𝑓 is the duration of each sampled trajectory 
CTE is the cumulative tracking error 
CCR is the cumulative control rate 

Flight Condition:  

DLC Performance: 66% reduction in CTE, 91.5% reduction in CCR 



DLC - Results 
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Initial Conditions: 

Augmented polynomial short period model: 

Flight Condition:  

Gain Scheduled Controller Deep Learning Controller  



DLC - Results 
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Gain Scheduled Controller 

Deep Learning Controller 

Gain Scheduled Controller 

No uncertainty or disturbances 



Contribution and Conclusion 

Distribution A: Approved for public release; distribution is unlimited. 

• Created a novel training procedure focused on bringing deep 
learning benefits to flight control.  

• Trained controller using a set of sample trajectories that 
contain disturbances, aerodynamic uncertainties, and 
significant control attenuation/amplification in the plant 
dynamics during optimization. 

• We found benefits of using a piecewise cost function that 
allows the designer to solve both robustness and 
performance criteria simultaneously.  

• We utilized an incremental initialization training procedure 
for deep recurrent neural networks. 



Future Work 
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• Pursue a vehicle model with flexible body effects, time delays, 
controller effectiveness, center of gravity changes, and 
aerodynamic parameter variations. 

• Explore improving parameter convergence and analytic 
guarantees: Kullback-Leibler (KL) divergence, importance 
sampling, etc. 

• Pursue development/use of robustness analysis tools for 
deep learning controllers to provide region of attraction 
estimates and time delay margins: sum-of-squares 
programming etc. 



Questions? 
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