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Chapter 13
What Do We Want a Foundation to Do?

Comparing Set-Theoretic, Category-Theoretic, and
Univalent Approaches

Penelope Maddy

Abstract It’s often said that set theory provides a foundation for classical math-
ematics because every classical mathematical object can be modeled as a set and
every classical mathematical theorem can be proved from the axioms of set theory.
This is obviously a remarkable mathematical fact, but it isn’t obvious what makes it
‘foundational’. This paper begins with a taxonomy of the jobs set theory does that
might reasonably be regarded as foundational. It then moves on to category-theoretic
and univalent foundations, exploring to what extent they do these same jobs, and to
what extent they might do other jobs also reasonably regarded as foundational.

Mainstream orthodoxy holds that set theory provides a foundation for contempo-
rary pure mathematics. Critics of this view argue that category theory, or more
recently univalent foundations, is better suited to this role. Some observers of this
controversy suggest that it might be resolved by a better understanding of what a
foundation is. Despite considerable sympathy to this line of thought, I’m skeptical
of the unspoken assumption that there’s an underlying concept of a ‘foundation’ up
for analysis, that this analysis would properly guide our assessment of the various
candidates. In contrast, it seems to me that the considerations the combatants offer
against opponents and for their preferred candidates, as well as the roles each
candidate actually or potentially succeeds in playing, reveal quite a number of
different jobs that mathematicians want done. What matters is these jobs we want
our theories to do and how well they do them. Whether any or all of them, jobs or
theories, deserves to be called ‘foundational’ is really beside the point.

The forces behind the rise of set-theoretic foundations (in the late nineteenth
and early twentieth centuries) and its subsequent accomplishments (as of the early
twenty-first) are explored and assessed in §13.1. §13.2 turns to the criticisms lodged
against set-theoretic foundations as category theory developed (in the 1940s) and the
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subsequent case for category-theoretic foundations (beginning in the 1960s). The
current proposal for univalent foundations is examined in the concluding §13.3.

13.1 Set-Theoretic Foundations1

It’s commonplace to note that all standard mathematical objects and structures can
be modeled as sets and all standard mathematical theorems proved from the axioms
of set theory2 – indeed, familiarity may well have dulled our sense of just how
remarkable this fact is. For our purposes, though, let me draw attention to another
commonplace: when called upon to characterize the foundational role of set theory,
many observers are content merely to remind us that mathematics can be embedded
in set theory in this way. But simply repeating that this is so leaves our present
questions untouched: what’s the point of this embedding?, what need does it serve?,
what foundational job does it do?

To answer these questions, we should look back at the conditions under which
set theory arose in the first place. Over the course of the nineteenth century,
mathematics had expanded dramatically in an extraordinary variety of directions.
This great torrent of new mathematics brought with it a pair of epistemological
losses, as the subject outstripped available thinking on what ultimately justifies
mathematical claims. Early efforts to make good on those losses eventually needed
support of their own, and it was at this point that set theory entered the picture. A
quick sketch of these developments should help explain what jobs set theory was at
least partly designed to do.

Consider first the case of geometry. From the diagrams of Euclidean times to
Kant’s late eighteenth century theory of spatial intuition, geometry was generally
understood as grounded in some variety of visualization or intuition. That changed
in the nineteenth century with the introduction of ‘points at infinity’ (where parallel
lines meet) and ‘imaginary points’ (with complex numbers as coordinates). There
was no denying the fruitfulness of regarding geometry from this new perspective,
but the imaginary points at which two disjoint circles ‘intersect’ can hardly be
visualized or intuited! So this is the first epistemic loss: visualization and intuition
were no longer adequate measures of correctness for the brave new geometry. What
justification, then, could be given for admitting these new, invisible points, what
guarantee that they wouldn’t severely compromise the whole subject? Geometers
were understandably queasy about this expansion of the proper domain of their
inquiry.

1Many themes of this section are explored in more detail, with sources, in §I of [2017].
2Items like the category of all groups or the category of all categories are exceptions. There is no
set of all groups or set of all categories for the same reason that there’s no set of all sets: sets are
formed in a transfinite series of stages, and there’s no stage at which all of them (or all of them that
are groups or all of them that are categories) are available to be collected. The category-theoretic
cases are explored in the next section.
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The second epistemic loss came with the rise of pure mathematics during this
same period.3 Up through the eighteenth century, there was no distinction between
pure and applied; mathematics was considered the study of the mathematical
structure literally present in the physical world. Galileo, Newton, Euler, Fourier,
and others took the goal of natural science to be the isolation of purely mathematical
laws governing the behavior of observable phenomena (e.g., planetary motions or
the distribution of heat in a body) without appeal to hidden causes (e.g., Cartesian
vortices or caloric fluids). This strategy was a tremendously successful at the
time, encouraging precise mathematization and eschewing dubious mechanical
explanations. The ongoing clash between mathematization of observable behavior
and causal explanation re-emerged in the late nineteenth century in the study of
thermodynamics: descendants of the purely descriptive, mathematical tradition, pro-
posed the experientially exception-less second law, that entropy can only increase,
while descendants of the causal, explanatory tradition developed the kinetic theory,
according to which a decrease in entropy is just highly unlikely. In the early years
of the twentieth century, the tables of history turned: kinetic theory with its atoms
and molecules in random motion was experimentally confirmed. This meant that
the laws of classical thermodynamics were revealed to be merely probable, and
more generally, that the many hard-won differential equations of the eighteenth and
nineteenth centuries were highly effective approximations, smoothed-out versions
of a more complex, discrete microstructure.

By the end of the nineteenth and beginning of the twentieth centuries, as pure
mathematics proliferated and applied mathematics lost its claim to literal truth,
it became clear that mathematics isn’t actually in the business of discerning the
precise formal structure of the physical world. Rather, it provides an array of abstract
models for the scientist to choose from for any particular descriptive job. Most of
these mathematical descriptions involve explicit idealizations and approximations,
and applied mathematicians expend considerable effort on explaining how and why
these non-literal representations are nonetheless effective, often within a limited
range of cases. Some such descriptions are effective despite our inability to explain
exactly what worldly features they’re tracking (e.g., in quantum mechanics). These
are crucial morals for the philosophy of science, but our concern here is the
epistemic loss suffered by mathematics itself: in the new, pure mathematics, there
was no place for physical interpretation or physical insight to guide developments.
In Euler’s day, a scientist’s feel for the physical situation could help shape
the mathematics, could constrain it to effective paths even when rigor was in
short supply. Now that mathematicians had declared their independence – their
freedom to pursue whatever paths caught their purely mathematical interest –
physical results and physical intuition could no longer serve to support or justify
mathematical work. Without this guidance, how were mathematicians to tell which
among the proliferation of new, purely mathematical abstract structures under were
trustworthy, legitimate, worthwhile?

3For more on this development, see [2008] or chapter 1 of [2011].
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In the face of these epistemic set-backs, two types of remedies were offered. The
first, in response to queasiness about the new, un-intuitable geometric points, came
in the mid-nineteenth century, when Karl von Staudt managed to build surrogates
for the suspicious entities out of straightforwardly acceptable materials. So, for
example, a point at infinity where two given parallel lines meet can be identified
with the collection (‘pencil’) of all lines parallel to those two, and this point at
infinity taken to be on a given line if the line is in that collection.4 In this way,
a previously suspicious mathematical development is domesticated by building
it up from previously justified mathematics. This method was widely used, but
eventually a new question has to be faced: which means of building new from old
are trustworthy, and why?

The second remedy, in response to the proliferation of abstract structures, came
later in the nineteenth century, with Hilbert’s axiomatic method: each proposed
structure should be rigorously axiomatized; if that axiomatization is coherent, the
structure is legitimate. Though careful isolation of appropriate axioms might reveal
unnoticed incoherence in some cases, for most others a new worry is immediate:
how do we tell which axiomatizations are coherent?5 A second concern is less
obvious, but also serious. Suppose I’ve devised an axiom system for the natural
numbers, another for the real numbers, another for analysis, another for point-set
topology, another for computable functions, and so on – and I prove theorems in
each of these. Can I use the theorems I’ve proved in one area to prove theorems in
another? John Burgess illustrates how centrally modern mathematics replies on the
ability to move easily between its branches:

There is the interconnectedness of the different branches of mathematics, a phenomenon
evident since the seventeenth century in the use of coordinate methods, but vastly expanded
in the nineteenth century. With the group concept, an idea originating in algebra is applied
to geometry. With ‘functional analysis’, ideas originating in geometry or topology are
applied to analysis, as functions come to be considered ‘points’ in an auxiliary space, and
operations like differentiation and integration come to be considered ‘transformations’ of
that space. (Footnote: One reason one needs to allow in pathological functions like the
Riemann-Weierstrass examples is in order to achieve a certain ‘completeness’, analogous
to the completeness of the real number-line, in the ‘space’ of functions.) And so on across
the whole of mathematics.

Interconnectedness implies that it will no longer be sufficient to put each individual branch
of mathematics separately on a rigorous basis. (Burgess 2015, pp. 59–60, emphasis in the
original)

Today it’s hard to see how Wiles could have proved Fermat’s Last Theorem if he’d
been confined to one or another of the individual axiom systems!

4Readers of Frege (1884) will recognize this as ‘the direction of a line’ and recall how it serves as
Frege’s model for identifying a natural number with a collection of equinumerous collections.
5This was before the development of formal languages and deductive systems, before a clear
understanding of consistency, satisfiability, and of course, before Gödel’s completeness and
incompleteness theorems.
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The epistemic and methodological questions raised by these nineteenth-century
losses and their partial remedies permeated the climate in which set theory first
arose. Though much of the initial motivation for introducing sets was purely
mathematical – Cantor, for example, was just trying to generalize his theorem on the
uniqueness of trigonometric representations – it soon became clear that the various
building methods of von Staudt and the rest were all essentially set-theoretic in
character, all derivable from a few elementary set-theoretic operations (like taking
subsets, intersections and unions, cross-products, and power sets). Indeed it turned
out that all the various items previously axiomatized in separate systems (natural
numbers, real numbers,6 analysis, etc.) could be constructed set-theoretically – the
beginnings, in other words, of the famous embedding of mathematics in set theory.

In this way, set theory made progress on our first two questions: the trustworthy
building methods are those of set theory; the coherent axiom systems are those
that can be modeled by sets. Of course this is cold comfort unless we know that
set theory itself is reliable – a particularly dubious proposition at the time, given
both the paradoxes and wide-spread debates over fundamentals (the well-ordering
principle, the axiom of choice, the continuum hypothesis, etc.). Working in the
Hilbertian tradition, Zermelo set out to axiomatize the subject, successfully isolating
the basic assumptions underlying the informal practice while forestalling the known
routes to paradox. Though he hoped to include a consistency proof in his original
presentation, Hilbert encouraged him to publish the axioms first and follow with
the consistency proof when it was ready. Years later it became clear what good
advice this was, when Gödel showed that only an stronger system could prove the
consistency of Zermelo’s axioms (assuming they are consistent).

So, much as we might like to have an iron-clad guarantee of the consistency of
set theory, and thus of the trustworthiness of the methods embedded therein, this is
a forlorn hope; all we get is the assurance that the embedded methods are no more
dangerous than Zermelo’s set theory. Most estimates of that danger have decreased
substantially over the intervening century, with the development of a compelling
intuitive picture of the universe of sets (the iterative conception), a finely-articulated
model within set theory (the constructible universe), and a vast, intricate and far-
reaching mathematical theory with no sign of contradiction. Meanwhile, various
levels of consistency strength have been delineated and explored – from relatively
weak subsystems of second-order arithmetic to ever-larger large cardinal axioms –

6It’s worth noting that Dedekind’s set-theoretic construction of the reals was different in character
from von Staudt’s construction of imaginary points. Von Staudt was faced with a practice in
good working order, but with questionable posits. Dedekind was faced with a defective practice
(basic theorems of the calculus couldn’t be proved). So von Staudt’s challenge was to remove
queasiness about the posits by domesticating them, while Dedekind’s was to produce a more
precise replacement that would both conform to previous practice and extend it (proving those
basic theorems). Thus Dedekind’s construction had a different, plausibly ‘foundational’ function
(called Elucidation in [2017]). As both category-theoretic and univalent foundations are content
to relegate Elucidation to ETCS, a weak category-theoretic theory of collections (see [2017], §II,
and UFP (2013), p. 8, respectively), it won’t figure in the comparative analysis here.
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yielding a hierarchy that’s now routinely used to calibrate the level of danger a
proposed theory presents. Presumably the ability to assess these risks is something
mathematicians value. Insofar as we’re inclined to regard Risk Assessment as a
‘foundational’ virtue, this is one foundational job that contemporary set theory does
quite well.

Finally, the other question raised by the axiomatic response to the loss of
older forms of justification (intuition/visualization, physical interpretation/insight)
concerned the interrelations between the various branches of pure mathematics: if
each branch is characterized by its own separate list of axioms, how can work in one
branch be brought to bear in another?

To guarantee that rigor is not compromised in the process of transferring material from one
branch of mathematics to another, it is essential that the starting points of the branches being
connected should . . . be compatible. . . . The only obvious way to ensure compatibility of
the starting points . . . is ultimately to derive all branches from a common, unified starting
point. (Burgess 2015, pp. 61–62)

This ‘common, unified starting point’ emerges when the various branches are all
embedded in a single theory of sets, when all theorems are treated as theorems in
the same system. In this way, set theory provides a Generous Arena where all
of modern mathematics takes place side-by-side and a Shared Standard of what
counts as a legitimate construction or proof. These are the striking achievements of
the well-known embedding of mathematics in set theory. Insofar as they fairly count
as ‘foundational’, set theory is playing two more crucial foundational roles.

Let’s pause a moment to notice that everything claimed so far on set theory’s
behalf has been at the level of straightforward mathematical benefits: the embedding
of mathematics in set theory allows us to assess the risk of our theories, to bring
results and techniques one branch of mathematics to bear on concepts and problems
in another, and to agree on standards of construction and proof. Some observers,
especially philosophers, have been tempted to draw – in addition – strong meta-
physical or epistemological morals: we’ve discovered that all mathematical entities
were really sets all along, or that our knowledge of mathematics is reducible to
our knowledge of sets.7 These further claims might rightly be called ‘foundational’,
too, but they’re also controversial, to say the least. For mathematical purposes, the
metaphysical claim is beside the point: it doesn’t matter whether we say the von
Neumann ordinals are the numbers or the von Neumann ordinals can serve as fully
effective mathematical surrogates for the numbers. As for the epistemological claim,
it’s just false: however it is that we know the things we know in the various, far-flung
branches of mathematics, it isn’t by deriving them from the axioms of set theory.
Most of the time, it’s our conviction that the mathematics is correct that makes us
think there must be a formal proof from those axioms!

While dubious philosophical claims like these are unlikely to affect practice,
other intrusions of irrelevant ontological thinking might come uncomfortably close.

7These are the spurious foundational virtues called Metaphysical Insight and Epistemic Source
in [2017].
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Quite generally, if we take the claim that set theory determines the ontology of
mathematics too seriously, we might be tempted to think of it as ‘the final court
of appeal’, charged with passing stern judgement on new mathematical avenues. In
fact, I think this gets the situation backwards: casting set theory as the Generous
Arena isn’t intended to limit mathematics; rather it places a heavy responsibility on
set theory to be as generous as possible in the types of structure whose existence it
implies.8 This admonition to maximize is one of the most fundamental and powerful
methodological principles guiding the development of set theory. If we imagine, in
our overly philosophical mood, that set theory has some kind of special access to
the metaphysical facts about what abstracta exist, then we might be tempted to put
the onus on mathematical practice to conform to the dictates of set theory, to raise
that special access above informed judgements of mathematical advantage. I trust
we can all agree that this would be a grave mistake.

A more subtle danger in the same general direction arises from the fact that our
embedding of mathematics in set theory is more like von Staudt’s approach than
Hilbert’s: a surrogate for the mathematical item in question is constructed by set-
theoretic means, as an item in V, the set-theoretic universe; it’s not enough, as the
Hilbertian would have it, that there’s a model somewhere in V that thinks there is
such an item. A simple example would be a proof of 1 = 0 from the axioms of
(first-order) Peano Arithmetic: PA + not-Con(PA) is consistent (assuming PA is),
so it has a model that thinks there’s a proof of 1 = 0 from PA; but viewed set-
theoretically, that model is benighted, the thing it takes for a proof of 1 = 0 has
non-standard length, isn’t really a proof. For a more interesting example, consider a
definable9 well-ordering of the real numbers. There is such an ordering in Gödel’s
inner model, the constructible universe L, but if we add large cardinal axioms to our
list, as many set theorists these days do, then that model is benighted: the thing it
takes for a well-ordering of the reals only orders the reals present in L; in fact, there
is no definable well-ordering of all the reals.

Speaking loosely, we might express this by saying that the inconsistency proof
and the well-ordering exist on the Hilbertian standard, while on the von Staudtian
set-theoretic standard, they don’t. This way of talking is expressive and largely
benign, but it can lead us astray if we forget that it’s figurative, if we fall into
taking it too literally. We need to bear in mind that the cash value of ‘these things
exist in V’ is just ‘the existence of (surrogates for) these things can be proved from
the axioms of set theory’ – a straightforward manifestation of set theory’s role as
Shared Standard of proof. To say that ‘the universe of sets is the ontology of
mathematics’ amounts to claiming that the axioms of set theory imply the existence
of (surrogates for) all the entities of classical mathematics – a simple affirmation of
set theory’s role as Generous Arena.

8The underlying methodological maxim here is to prefer non-restrictive, maximizing theories.
[1997] concludes with an early attempt to formalize this notion. Various developments of this
idea and alternatives to it have been suggested, but the problem remains open.
9That is, projectively definable.
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The danger in taking figurative ontological talk too seriously is that it can
lead to a sort of rigidity in practice. Consider that definable well-ordering of
the reals. Suppose a pure mathematician has a clever and fruitful approach to a
certain problem, or an applied mathematician has a way to effectively model some
physical situation, by means of such an ordering. If we believe that set theory is the
‘ontology’ of mathematics, ‘the final court of ontological appeal’, we’ll be tempted
to say ‘tough luck, it might be nice if there were such a thing, but there isn’t’. But
this seems wrong. Both mathematicians’ activities can be carried out inside L – by
which we mean, in set theory with V = L as an additional axiom. Since that theory
includes the standard axioms, it provides a fairly Generous Arena all by itself:
the usual constructions and techniques are ready to hand; to speak in the figurative
idiom, L is a pretty good place to do mathematics. The disadvantage is that results
proved using V = L can’t automatically be exported to other areas of mathematics,
and results from other areas that depend on large cardinals can’t automatically be
imported. But as long as these import/export restrictions are observed, as long as
the use of axioms beyond the standard ones is carefully flagged, there’s no reason
to rule out these developments. The pure mathematician’s work on her problem is
simply part of the investigation of L, a particularly important part of V; the applied
mathematician has determined that it’s most effective to model his physical situation
in L rather than V.

This leaves us with a tempered version of the von Staudian ‘final court of
ontological appeal’: the axioms for our Generous Arena, which constitute our
Shared Standard of proof, include the usual axioms – plus some others, beginning
with large cardinals, that add to their generosity – but these can be temporarily
adjusted for mathematical or scientific purposes with suitable import/export restric-
tions. Once we reject the idea that the choice of a fundamental theory to do these
foundational jobs is a matter of determining the ‘true mathematical ontology’, once
we focus instead on the literal mathematical content of our decisions, we come to
see that we can and should allow some wiggle room for both pure and applied
mathematicians to work in well-motivated variants of the fundamental theory. I
won’t attempt to explicate what counts as ‘well-motivated’ – this requires the sound
judgment of insightful practitioners – but one clear qualifier is the existence of an
attractive, well-understood model inside V,10 as in the case of L and V = L.11

Though this marks a slight adjustment to strict von-Staudism, it’s still very far from
full Hilbertism, where any consistent theory as good as any other – precious few
such theories can deliver a pure mathematical theorem worth proving or an applied
mathematical model amenable to actual use.12

10This is, the existence of such a model can be proved from the fundamental axioms.
11Another well-known example is the theory ZF + V = L(R) + AD. Again, separating the
‘mathematically worthy’ from the unworthy no doubt requires keen mathematical discernment
and well-informed good judgement.
12For successful application, it’s not enough that our theory prove the existence of a suitable
structure; it must exist in a context with enough mathematical tools to study and manipulate that
structure. See [2011], pp. 90–96, for a related discussion.
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One last point. Returning once more to the historical development of set theory,
Zermelo’s axioms were soon supplemented with replacement and foundation, and
his imprecise notion of ‘definite property’ was sharpened to ‘formula in the first-
order language of set theory’. This generated what we now know as the formal
theory ZFC. At that point, the embedding of mathematics in set theory came to serve
yet another purpose: once mathematics was successfully encoded in a list of formal
sentences, meta-mathematical tools could be brought to bear to prove theorems
about its general features. Among the greatest of these results were those of Gödel –
classical mathematics, if consistent, can’t prove its own consistency or the negation
of the Continuum Hypothesis – and Cohen – or the Continuum Hypothesis itself.
Here set theory provides a Meta-mathematical Corral, tracing the vast reaches of
mathematics to a set of axioms so simple that they can then be studied formally
with remarkable success. Perhaps this accomplishment, too, has some claim to the
honorific ‘foundational’.

So my suggestion is that we replace the claim that set theory is a (or ‘the’)
foundation for mathematics with a handful of more precise observations: set theory
provides Risk Assessment for mathematical theories, a Generous Arena where
the branches of mathematics can be pursued in a unified setting with a Shared
Standard of proof, and a Meta-mathematical Corral so that formal techniques
can be applied to all of mathematics at once. I haven’t offered any argument that
these accomplishments must be understood to be ‘foundational’, but it seems to
me consistent with the ordinary use of the term to so apply it. I take it for granted
that these accomplishments are of obvious mathematical value, whatever we decide
about the proper use of the term ‘foundational’.

Let’s now turn to two of set theory’s purported rivals: first category-theoretic
foundations, then univalent foundations.

13.2 Category-Theoretic Foundations13

By the end of the 1930s, ZFC had been codified in its first-order form and its
role as Generous Arena, Shared Standard, Meta-mathematical Corral, and in
Risk Assessment were widely accepted. Soon thereafter, mathematical pressures in
abstract algebra gave rise to category theory, and category theorists began to criticize
set theory as a ‘foundation’. By the 1960s, category theory was being proposed
as alternative to set theory that could overcome these weaknesses. A look at the
objections raised and the solutions offered should help us determine what jobs the
critics thought a ‘foundation’ was supposed to do.

So, what was wrong with set-theoretic foundations? The first objection is that
category theory deals with unlimited categories, like the category of all groups or
the category of all categories or the category of all mathematical X’s, but nothing

13For more on many themes of this section, with sources, see §II of [2017].
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is vast, its construction techniques wildly indiscriminate, so it includes hordes
of useless structures and – this is the important point – no way of telling the
mathematically promising structures from the rest. Furthermore, the set-theoretic
surrogates have lots of extraneous structure, artifacts of the way they’re constructed.
Here the hope was to find a foundation that would guide mathematicians toward the
important structures and characterize them strictly in terms of their mathematically
essential features. Such a foundation would actually be useful to mainstream
mathematicians in their day-to-day work, not remote, largely irrelevant, like set
theory; it would provide Essential Guidance. Proponents held that this is precisely
what category theory had done for algebraic geometry and algebraic topology.

Now it could be that some over-zealous partisan of set-theoretic foundations
at one time or another claimed that mathematics would be better off if all
mathematicians thought like set theorists, but as far as I can tell, this was never one
of the foundational jobs that set theory was seriously proposed to do. No reasonable
observer would suggest that an algebraic geometer or algebraic topologist would
do better to think in set-theoretic rather than category-theoretic terms. But it seems
equally unreasonable to suggest that an analyst, or for that matter a set theorist,
would do better to think in category-theoretic terms.17 What’s intriguing here is that
proponents of category-theoretic ‘foundations’ would apparently agree. Mac Lane,
for example, writes:

Categories and functors are everywhere in topology and in parts of algebra, but they do not
yet relate very well to most of analysis.

We conclude that there is as yet no simple and adequate way of conceptually organizing all
of Mathematics. (Mac Lane 1986, p. 407)

If a ‘foundation’ is to reveal the underlying essence, the conceptual core, omit all
irrelevancies, and guide productive research, then it’s unlikely that it can encompass
all areas of mathematics. Faced with this tension between Essential Guidance and
Generous Arena, Mac Lane seems willing to forego Generous Arena, and with it
presumably Shared Standard and Meta-Mathematical Corral.

This preference is more-or-less explicit in the theory of categories that’s proposed
as our fundamental foundation. The ‘Category of Categories as a Foundation’
(CCAF) was introduced by Lawvere in the 1960s and subsequently improved by
McLarty in the 1990s. CCAF is a actually a minimal background theory which
is then supplemented as needed to guarantee the existence of particular categories
for this or that area of mathematics. One such special category is ‘The Elementary
Theory of the Category of Sets’ (ETCS), which codifies a relatively weak theory of
collections (ZC with bounded separation). Collections in this sense are understood
in a natural way in terms of their arrows rather than their elements, but to gain
a category-theoretic set theory with sufficient strength for, say, Risk Assessment,

17See, e.g., the work of Mathias discussed in [2017].
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more characteristically set-theoretic notions have to be translated in from outside.18

A category for synthetic differential geometry is another example that could be
added with a suitable axiom. As might be expected from the Hilbertian flavor of
this approach, it isn’t conducive to Generous Arena.

So despite the rhetoric – pitting category theory against set theory, proposing
to replace set-theoretic foundations with category-theoretic foundations – the two
schools are aimed at quite different goals. Set theory provides Risk Assessment,
Generous Arena, Shared Standard, and Meta-mathematical Corral, and it
apparently continues to do these jobs even in the context of category-theoretic
foundations. What category theory offers is Essential Guidance, but only for those
branches of mathematics of roughly algebraic character. I have no objection to
calling this a ‘foundational’ achievement, so long as it isn’t taken to supersede the
other foundational goals explored here. What category theory has accomplished –
however this achievement is labeled – is a way of thinking about a large part of
mathematics, of organizing and understanding it, that’s been immensely fruitful in
practice. Proponents of set-theoretic foundations should have nothing but admira-
tion for this achievement. It raises deep and important methodological questions
about which ‘ways of thinking’ are effective for which areas of mathematics, about
how they differ, about what makes them so effective where they are and ineffective
where they aren’t, and so on.

So, should we regard set theory’s range of accomplishments for mathematics
in general as more ‘foundational’ than category-theory’s conceptual achievements
across several important areas of the subject, or vice versa? I confess that this
doesn’t strike me as a productive debate. In contrast, a concerted study of the
methodological questions raised by category theory’s focus on providing a fruitful
‘way of thinking’ would almost certainly increase our fundamental understanding
of mathematics itself. I vote for that.

13.3 Univalent Foundations

With these nineteenth and twentieth century developments in the background, the
turn of the 21st brought a new critique of set-theoretic foundations and a new
proposal for its replacement. Like set theory and category theory, this more recent
effort also arose out of ongoing mathematical practice. The mathematics involved
this time is homotopy theory, which, like category theory, has its roots in abstract
algebra; proponents of the subject describe it as ‘an outgrowth of algebraic topology
and homological algebra, with relationships to higher category theory’ (UFP 2013,
p. 1). The program of univalent foundations involves using homotopy theory to
interpret Martin-Löf’s type theory, then adding the so-called ‘Univalence Axiom’ –

18Of course set theory also translates notions from outside when locating their surrogates, but set
theory isn’t claiming to provide Essential Guidance.
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which has the effect, understood roughly, of identifying isomorphic structures.19

The result is declared to be ‘incompatible with conventional [presumably, set-
theoretic and category-theoretic] foundations’ (Awodey (2014), p. 1) and to provide
‘a completely new foundation’ (Voevodsky 2014a, b, p. 9).

We’ve seen that set-theoretic foundations arose in response to the serious
practical questions in the wake of the profound shift from mathematics as a theory
of the world to mathematics as a pure subject in its own right. In contrast, category-
theoretic practice was functioning well enough with Grothendieck’s understanding;
the impetus this time came from the hope for truly unlimited categories (miscon-
strued at the time as a shortcoming of set-theoretic foundations) and the promise
that category theory could do a new and different foundational job (Essential
Guidance). Univalent foundations takes a page from each book: there was a real
practical problem to be addressed, and addressing it introduced a new foundational
goal. Let me explain.

Grothendieck’s work in category theory was already so complex that ‘the
intellectual faculties are being strained to their uttermost limit’ (Burgess 2015,
p. 176), and as younger mathematicians pushed these ideas further, there was some
evidence those limits had been breached. Vladimir Voevodsky, one of the leaders
in this development and the originator of univalent foundations, describes how the
troubles began:

The groundbreaking 1986 paper ‘Algebraic Cycles and Higher K-theory’ by Spencer Bloch
was soon after publication found by Andrei Suslin to contain a mistake in the proof of
Lemma 1.1. The proof could not be fixed, and almost all the claims of the paper were left
unsubstantiated.

The new proof, which replaced one paragraph from the original paper by thirty pages of
complex arguments, was not made public until 1993, and it took many more years for it to
be accepted as correct. (Voevodsky 2014a, p. 8)

Soon, a similar problem hit closer to home. In 1999–2000, Voevodsky lectured at
Princeton’s Institute for Advanced Study on an approach to motivic cohomology
that he, Suslin, and Eric Friedlander had developed, an approach based on earlier
work of Voevodsky. That earlier work was written while the jury was still out on
Bloch’s lemma, so necessarily did without it. As the lectures progressed, the details
were carefully scrutinized.

Only then did I discover that the proof of a key lemma in my [earlier] paper contained
a mistake and that the lemma, as stated, could not be salvaged. Fortunately, I was able
to prove a weaker and more complicated lemma, which turned out to be sufficient for all
applications. A corrected sequence of arguments was published in 2006. (ibid.)

Perhaps even worse, in 1998 a counterexample was reported to a 1989 paper
of Michael Kaparonov and Voevodsky, but because of the complexities involved,
Voevodsky reports that he didn’t believe it himself until 2013!

19See Awodey (2014, p. 1).
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It’s easy to sympathize with the cumulative effect of these mishaps on Voevod-
sky: ‘This . . . got me scared’ (ibid.). It became hard to ignore the fact that proofs in
this area were so complex as to be prone to hidden glitches, a worry exacerbated by
the further fact that correcting these glitches made the proofs even more complex.
To top off the anxiety, at this point Voevodsky was hoping to push even further, into
something new he called ‘2-theories’.

But to do the work at the level of rigor and precision I felt necessary would take an enormous
amount of effort and would produce a text that would be very hard to read. And who would
ensure that I did not forget something and did not make a mistake, if even the mistakes in
much more simple [!!] arguments take years to uncover? (Voevodsky 2014a, p. 8)

This, then, is the pressing new problem faced by mathematical practioners in this
field: how can we be confident that our proofs are correct? To this point, various
sociological checks had been enough – proofs were carefully examined by the
community; mathematicians of high reputation were generally reliable; and so on –
but those checks had apparently been outstripped.

The need to address this problem gives rise to a new goal – a systematic
method for Proof Checking – and it seems reasonable to classify this goal,
too, as ‘foundational’. As we’ve seen, set-theoretic foundations originated in the
embedding of standard mathematics in set theory. For this purpose, as Voevodsky
puts it, all we need is to

. . . learn how to translate propositions about a few basic mathematical concepts into
formulates of ZFC, and then learn to believe, through examples, that the rest of mathematics
can be reduced to these few basic concepts. (Voevodsky 2014a, p. 9)

Here we have the embedding expressed in formal terms. Despite its meta-
mathematical virtues, this formal system isn’t one in which any mathematician
would actually want to prove anything; in fact (as noted earlier), our confidence
that there is a formal proof is usually based on our confidence in the informal proof,
combined with our informed belief that all informal proofs can be formalized in this
way. The demands of Proof Checking are quite different: we need a system that
can represent actual proofs, ‘a tool that can be employed in everyday mathematical
work’ (Voevodsky 2014a, p. 8).20

20Awodey traces the roots of univalent foundations in traditional foundational work to Frege
rather than Zermelo: ‘this new kind of . . . formalization could become a practical tool for the
working mathematician – just as originally envisaged by Frege, who compared the invention
of his Begriffsschrift with that of the microscope, (Awodey 2016a, p. 8, see also Awodey and
Coquand (2013, p. 6). While Frege does make this comparison, it involves a contrast between the
microscope and the eye: ‘because of the range of its possible uses and the versatility with which
it can adapt to the most diverse circumstances, the eye is far superior to the microscope’ (Frege
1879, p. 6). Frege’s formal system ‘is a device invented for certain scientific purposes, and one
must not condemn it because it is not suited to others’ (ibid.). The ‘scientific purpose’ in question
is to determine whether arithmetic can be derived by pure logic; the Begriffsschrift was needed
‘to prevent anything intuitive from penetrating here unnoticed . . . to keep the chain of inferences
free of gaps’ (ibid., p. 5). It seems to me likely that Awodey’s ‘practical tool for the working
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Now there are actually several proof checking technologies on offer these days,
some even based on set theory. In his contribution to this volume, Paulson touches on
a range of options and remarks that ‘every formal calculus . . . will do some things
well, other things badly and many other things not at all’ (Paulson 2019, Chap.
20, pp. 437–453). The proponents of univalent foundations have their own preferred
system, combining ideas from Martin-Löf’s type theory with insights from the study
of computer languages – a system called ‘the calculus of inductive constructions’
(CIC). The project is to express ordinary mathematical reasoning in these terms – a
process that might ‘become as natural as typesetting . . . papers in TeX’ (UFP 2013,
p. 10) – and to apply the associated proof assistant (Coq) to mechanically check the
validity of those arguments.

Obviously this is a heady undertaking, still in its early stages,21 but the ambitions
of these theorists go beyond the original goal of testing the complex arguments
of homotopy theory: Voevodsky holds that univalent foundations, ‘like ZFC-
based foundations and unlike category theory, is a complete foundational system’
(Voevodsky 2014a, p. 9).22 By this he means that both set-theoretic and univalent
foundations aim to provide three things:

(1) a formal language and rules of deduction: first-order logic with the axioms of
set theory, on the one hand; the aforementioned deductive system CIC, on the
other.

(2) an intuitive interpretation of this deductive system: the iterative hierarchy, on
the one hand; homotopy types, on the other.23

(3) a method for encoding mathematics: the well-known embedding of mathemat-
ics in set theory, on the one hand; an encoding in homotopy types on the other.

The presence of (3) indicates that Generous Arena and Shared Standard are
goals of univalent foundations, though Voevodsky admits that ‘this is . . . the least
understood part of the story’ (Voevodsky 2014a, p. 9).

The question that needs answering is whether this encoding in homotopy types
is like set theory’s proof that there is a set-theoretic surrogate or like category
theory’s postulation of a category with the desired features – recalling von Staudt
vs. Hilbert – as only the former serves to unite the encodings in a single Generous
Arena. There’s probably an easy answer to this question, but if so, it’s unknown to
me. Voevodsky’s strong analogy between set-theoretic and univalent foundations,
summarized above, suggests the former; while some of Awodey’s remarks appear
to lean toward to latter. The move to univalent foundations, Awodey writes,

mathematician’ would be analogous to the eye, not the microscope, that serving as such a practical
tool is one of those purposes for which the microscope and Frege’s formal system are ‘not suited’.
21Cf. UFP 2013, p. 2: ‘univalent foundations is very much a work in progress’.
22I don’t know what Voevodsky finds lacking in category-theoretic foundations – perhaps that it
fails to provide a Generous Arena?
23Interestingly, Voevodsky (2014a) observes that ‘our intuition about types of higher levels comes
mostly from their connection with multidimensional shapes, which was studied by ZFC-based
mathematics for several decades’ (p. 9).
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. . . has the practical effect of simplifying and shortening many proofs by taking advantage
of a more axiomatic approach, as opposed to more laborious analytic [e.g., set-theoretic]
constructions. (Awodey 2016b, p. 3)

In a footnote, Awodey alludes to Russell’s famous remark about ‘the advantages of
theft over honest toil’ (ibid.).

In broad outline, it appears that the foundational theory into which mathematics
is to be embedded begins by postulating a countable hierarchy of ‘universes’ (UFP
2013, p. 549) that obey a series of ‘rules’ (ibid., pp. 549–552). To this ‘type theory’,
we add three axioms of homotopy theory: function extensionality, univalence, and
higher inductive types (ibid., §A.3). Set theory, for example, is encoded as the
category of all the 0-types in one or another of these universes, together with the
maps between them (ibid., pp. 398, 438). So far, this looks more like honest toil
than like theft. But to get even to ETCS, we have to add the axiom of choice,
which incidentally brings with it the law of excluded middle (ibid., §10.1.5). If
we simply assert that there is such a category, our procedure begins to look more
like the axiomatic method of category-theoretic foundations – start with CCAF
and add axioms as needed, asserting the existence of individual categories with
the desired features for the various areas of mathematics – and we’ve seen that
this sort of approach doesn’t even aim for a Generous Arena. I’m in no position
to assess how far univalent foundations extends in this direction – whether these
are minor variations that can be handled with careful import/export restrictions or
something more Hilbert-like – so I leave this as a question to its proponents: is your
theory intended to provide a Generous Arena for all branches of mathematics and
a Shared Standard of proof – and if so, how?

Whatever the answer to this question may be, further doubts on the viability of
univalent foundations for Generous Arena and Shared Standard arise when we
consider Essential Guidance, the key new foundational goal of category-theoretic
foundations. Following the category theorists, Voevodsky seems to endorse this
goal: he holds that ‘the main organizational ideas of mathematics of the second
half of the 20th century were based on category theory’ (Voevodsky 2014a, p. 9);
seeks ‘a tool that can be employed in everyday mathematical work’ (ibid., p. 8); and
counts set theory’s failure in these areas against its suitability as a foundation.24 So,
for example, it isn’t enough that we find a way to embed set theory in the theory of
homotopy types; we need to find a way that reveals the true nature of the subject,
unlike ZFC:

The notion of set . . . is fundamental for mathematics. . . . However, the theory of sets [has]
never been successfully formalized. . . . The formal theory ZFC . . . is not an adequate

24Similarly, Awodey bemoans the ‘serious mismatch between the everyday practice of mathematics
and the official foundations of mathematics in ZFC’ (Awodey 2016a, p. 2) and connects univalent
foundations with structuralist tendencies in the philosophy of mathematics that frown on the
extraneous features of set-theoretic surrogates.
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formalization of the set theory which is used in mathematics. (Voevodsky 2014b, lecture 2,
slides 21–22)25

Voevodsky takes this to be accomplished in the new foundation:

As part of Univalent Foundations we now have a formalization of set theory in the form of
the theory of types of h-level 2 in MLTT [i.e., Martin-Löf type theory].26 I believe that this
is the first adequate formalization of the set theory that is used in pure mathematics. (Ibid,
lecture 3, slide 11)27

Set theorists would most likely dispute this claim,28 but for our purposes, what
matters is that the goal of Essential Guidance is more or less explicit. And as
we’ve seen, it seems unlikely that any one way of thinking is best for all areas of
mathematics, so aiming for Essential Guidance tends to undercut Generous Arena
and Shared Standard.

So, given that Generous Arena and Shared Standard are once again threatened
by Essential Guidance, likely to return to the province of set theory, what of the
other foundational goals? Speaking of the new formal system, Voevodsky remarks

Currently we are developing new type theories more complicated than the standard Martin-
Löf type theory and at the same time more convenient for practical formalization of
complex mathematics. Such type theories may easily have over a hundred derivation rules.
(Voevodsky 2013, slide 18)

Notice again the contrast with formalized ZFC. The first-order logic used there
is designed to be a simple as possible, with as few formation and inference rules
as possible, facilitating meta-mathematical study of theories expressed therein.
Because the system of univalent foundations is designed to be as natural as possible
a format for actual mathematical reasoning, it ends up being considerably more
complex, so the goal of Metamathematical Corral presumably also remains with
set theory. Furthermore, the complexity of univalent foundations leaves the question
of consistency unsettled, much as in the early days of pure mathematics, and the
solution is the same:

Thus a careful and formalizable approach is needed to show that the newly constructed
type theory is at least as consistent as ZFC with a given structure of universes [that is, with
inaccessibles]. (Voevodsky, ibid.)

In other words, the role of ‘a foundational system . . . as a standard of consistency’
(Voevodsky 2014a, p. 8) – Risk Assessment – also falls to set theory.29

25Cf. Awodey and Coquand 2013, p. 6: ‘the fundamental notion of a set . . . in univalent
foundations turns out to be definable in more primitive terms’.
26Colin Mclarty was kind enough to explain to me that ‘types of h-level 2’ is just a different
terminology for the ‘0-types in one or another of these universes’ in the previous paragraph.
27Cf. UFP (2013, p. 9).
28I’m not sure what these thinkers take to be wrong with ZFC, but it could be something akin to the
category-theorist’s conviction that a neutral notion of ‘collection’ is better understood in top-down
function-based terms (as in ETCS) rather than bottom-up element-based terms (as in ZFC).
29See also UFP (2013, p. 15).
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To sum up, then, Risk Assessment, Metamathematical Corral, Generous
Arena, and Shared Standard all appear to continue as the province of set-theoretic
foundations. We’re left with Proof Checking, the new goal introduced by univalent
foundations. The promise is that ordinary mathematical reasoning will be easily and
directly expressed in CIC and the validity of proofs then checked automatically in
COQ, and thus that homotopy type theory will provide a framework for reliable
Proof Checking:

I now do my mathematics with a proof assistant. I have lots of wishes in terms of getting
this proof assistant to work better, but at least I don’t have to go home and worry about
having made a mistake in my work. I know that if I did something, I did it, and I don’t have
to come back to it nor do I have to worry about my arguments being too complicated or
about how to convince others that my arguments are correct. I can just trust the computer.
(Voevodsky 2014a, p. 9)

I think we can all agreed that this is a very attractive picture, even if it would only
apply to areas of mathematics amenable to this sort of conceptualization.

13.4 Conclusion

The upshot of all this, I submit, is that there wasn’t and still isn’t any need
to replace set theory with a new ‘foundation’. There isn’t a unified concept of
‘foundation’; there are only mathematical jobs reasonably classified as ‘founda-
tional’. Since its early days, set theory has performed a number of these important
mathematical roles – Risk Assessment, Generous Arena, Shared Standard,
Meta-mathematical Corral – and it continues to do so. Demands for replacement
of set theory by category theory were driven by the doomed hope of founding
unlimited categories and the desire for a foundation that would provide Essential
Guidance. Unfortunately, Essential Guidance is in serious tension with Generous
Arena and Shared Standard; long experience suggests that ways of thinking
beneficial in one area of mathematics are unlikely to be beneficial in all areas
of mathematics. Still, the isolation of Essential Guidance as a desideratum, also
reasonably regarded as ‘foundational’, points the way to the methodological project
of characterizing what ways of thinking work best where, and why.

More recent calls for a foundational revolution from the perspective of homotopy
type theory are of interest, not because univalent foundations would replace set
theory in any of its important foundational roles, but because it promises something
new: Proof Checking. If it can deliver on that promise – even if only for some, not
all, areas of mathematics – that would be an important achievement. Time will tell.
But the salient moral is that there’s no conflict between set theory continuing to do
its traditional foundational jobs while these newer theories explore the possibility of
doing others.30

30Many thanks to Colin McLarty, Lawrence Paulson, and an anonymous referee for very helpful
explanations, discussions, and comments.



pjmaddy@uci.edu

13 What Do We Want a Foundation to Do? 311

References

Awodey, S. (2014). Structuralism, invariance, and univalence. Philosophia Mathematica, 22, 1–11.
Awodey, S. (2016a). Univalence as a principle of logic. Unpublished. Available at https://

www.andrew.cmu.edu/user/awodey/
Awodey, S. (2016b). A proposition is the (homotopy) type of its proofs (Unpublished). Available at

https://www.andrew.cmu.edu/user/awodey/
Awodey, S., & Coquand, T. (2013, Summer). Univalent foundations and the large-scale formaliza-

tion of mathematics. Princeton Institute for Advanced Study Letter. https://www.ias.edu/ideas/
2013/awodey-coquand-univalent-foundations

Burgess, J. (2015). Rigor and structure. Oxford: Oxford University Press.
Ernst, M. (2015). The prospects of unlimited category theory. Review of Symbolic Logic, 8,

306–327.
Frege, G. (1879). Begriffsschrift (S. Bauer-Mengelberg, Trans., reprinted in von Heijenoort, Ed.).

From Frege to Gödel, (Cambridge, MA: Harvard University Press, 1967), pp. 5–82.
Frege, G. (1884) Foundations of arithmetic (J. L. Austin, Trans.). (Oxford: Blackwell, 1980
Mac Lane, S. (1971). Categorical algebra and set-theoretic foundations. In D. Scott & T. Jech

(Eds.), Axiomatic set theory, proceedings of the symposium in pure mathematics of the AMS,
UCLA 1967 (pp. 231–240). Providence: AMS.

Mac Lane, S. (1986). Mathematics: Form and function. New York: Springer.
Maddy, P. (1997). Naturalism in mathematics. Oxford: Oxford University Press.
Maddy, P. (2008). How applied mathematics became pure. Review of Symbolic Logic, 1, 16–41.
Maddy, P. (2011). Defending the axioms. Oxford: Oxford University Press.
Maddy, P. (2017). ‘Set-theoretic foundations’, to appear in A. Caicedo et al, Foundations of

mathematics (Contemporary mathematics, Vol. 609). Providence: AMS.
Paulson, L. (2019). Formalizing mathematics in simple type theory (this volume).
Univalent Foundations Program, group author (UFP). (2013). Homotopy type theory: Univalent

foundations of mathematics. Princeton: Institute for Advanced Study.
Voevodsky, V. (2013, May 8). Slides for a plenary talk to the Association for Symbolic Logic.

Available at https://www.math.ias.edu/vladimir/lectures
Voevodsky, V. (2014a, Summer). The origins and motivations of univalent foundations. Princeton

Institute for Advanced Study Newsletter, pp. 8–9. https://www.ias.edu/ideas/2014/voevodsky-
origins

Voevodsky, V. (2014b, September) ‘Foundations of mathematics: Their past, present and future’,
the Bernays lectures I-III, ETH Zurich.

https://www.andrew.cmu.edu/user/awodey/
https://www.andrew.cmu.edu/user/awodey/
https://www.ias.edu/ideas/2013/awodey-coquand-univalent-foundations
https://www.math.ias.edu/vladimir/lectures
https://www.ias.edu/ideas/2014/voevodsky-origins

