Towards Micron-scale electron accelerator at the tip of endoscopy – Source and delivery for compact LWFA

Weijian Sha Discussions on fiber laser technology

for the "Endoscopic Accelerator" initiative T. Tajima (LWFA) J. Kuo, D. Roa, F. Tamanoi (medical applications) J.-C. Chanteloup, W. Sha, D. Strickland (fiber lasers) T. Kawachi, M. Mori, KPSI (LWFA experiments) H. Lee (laser experiments and near critical density targeted)

...

Part 1. Introduction

External areal → Endoscopic "vector" treatment

Conventional radiotherapy: Electron energies 6-20MeV by Linac or LWFA

Endoscopic LWFA for electron radiotherapy

Roa, Kuo, Moyses, Taborek, Tajima, Mourou, and Tamanoi, Photonics (2022)

LWFA could provide high dose <u>"FLASH</u>" therapy

Furthermore, much tinier with fiber

An Illustration of endoscope (or colonoscope)

Endoscopic LWFA for electron radiotherapy

Outline

Electron accelerator for endoscopic radiotherapy

- Conventional accelerator for radio therapy → Compact Accelerator for endoscopic therapy
- 2. High-Density Laser Wakefield Acceleration (theory and experiment)
- e-beam (>10 keV) from laser 10^{14} W/cm²

3. Ultrafast fiber laser

- Table-top lasers \rightarrow Fiber lasers for miniature accelerator
- 4. Explore Innovations target and flexible delivery
- Carbon nanotube
- Hollow core fiber & others

Compact Laser Source for Electron Accelerator at the tip of endoscope

Rochester/Michigan laser **100 fs, 20 μJ, 0.2 GW**

→ ultrafast fiber laser/amplifier

My brief background (acamedic and industrial)

Started graduate study in LLE (U of Rochester)
PhD ultrafast lasers & spectroscopy (U of Michigan)
Post-doctoral researches in ultrafast science
Worked in industries in laser diodes, fiber lasers, fiber-optic communications
(SDL, General Atomics, CommScope)

Part 2. High-Density Laser Wakefield Acceleration (LWFA) (theory guidance and experiments)

Laser Wakefield Acceleration

Wake

Wake by a duck Nature (or mother duck) shows us.

For electron energy > MeV or GeV

• Low plasma density regime, $a_0 > 1$ or I >10¹⁸ W/cm². Table-top, or larger lasers > TW, PW

Micron-scale electron accelerator at the tip of endoscopy: > 10 keV

• Near-critical density regime, 10^{14} W/cm², GW or sub-GW, compact fiber laser

10

Experimental Realization of near-critical density LWFA 50 keV to 400 keV electron beam

(KPSI QST) M. Mori, T. Kawachi et al, AIP Advances (2024)

- Glass microcapillary target 400 μm thickness
- Ti:Sapphire CPA laser
- Target ablated by laser, produce plasma at or near critical density
- Measured electron energy over a range of laser intensity
- > 50 keV at $10^{16}W/cm^2$

Experiment planned at 10^{14} W/cm²

Carbon Nanotube for endoscopic LWFA –

Intended for low intensity compact laser source

B. Nicks et al., Photonics (2021)

Chattopadhyay, S., Mourou, G., Shiltsev, V., and Tajima, T. *Beam acceleration in Crystals and Nanostructures* (World scientific 2020)

Near-critical density LWFA – High conversion efficiency

Barraza, Tajima, Strickland, Roa (Photonics, 2022)

Photonics 2022, 9, x FOR PEER REVIEW

- > 10 keV electrons with 10^{14} W/cm^2
- High conversion efficiency 30% at near critical density

5 of 11

Beatwave LWFA for endoscopic accelerator

Beatwave 1ω and 2ω , pulse width ~ 2 ps

Part 3. Ultrafast fiber laser as compact source

For microscopic laser accelerator e-beam (>10 keV) from laser 10¹⁴ W/cm²

Free-Space Laser System (lenses, mirrors, alignment)

1

Concentrating light energy onto picosecond/femtosecond pulses Peak Power: Giga (10⁹), Tera (10¹²), Peta Watt (10¹⁵)

Power

Time

Compact Laser Source for Electron Accelerator at the tip of endoscope

→ ultrafast fiber laser/amplifier

Rochester/Michigan laser **100 fs, 20 μJ, 0.2 GW**

Power of Optical Fiber – Light Guiding

Total internal reflection from Snell's law, at angles close to 90°

(like skipping a stone on water surface)

The effect is astounding: 1% difference in $\Delta n = n_2 - n_1$ is sufficient to guide light.

Acceptance angle > 60° for coupling divergent laser diodes.

Fiber Laser Construction, Example

Fiber Laser Technology & Applications

W. Sha, J.-C. Chanteloup, G. Mourou, Photonics 2022, 9, 423

Nonlinearity limit 10 GW/cm² of ultrafast pulse amplification in fiber

XCAN – Coherently Beam Combined Laser (61 fiber lasers)

61 fiber lasers

Coherently Combined

École Polytechnique

J.-C. Chanteloup et al., Laser Focus World 2021

Part 4. Fiber delivery for LWFA at tip of endoscope

Fiber delivery for LWFA at tip of endoscope

Carbon nanotubes on a substrate:

→ toward Carbon Nanoforest (instead of plasma w/vacuum)

Roa, Kuo, Moyses, Taborek, Tajima, Mourou, and Tamanoi, Photonics (2022).

Laser Beam Quality and Focal Intensity 10¹⁴ W/cm²

Application	Pulse Energy →	Pulse Width →	Peak Power	Power Factor	Focal Diameter	Focal Area cm ²	Focused Intensity	$\geq 10^{14} \mathrm{W/cm^2}$
Compact LWFA (5 μm focus)	50 µJ	1 ps	50 MW	1E+06	5 µm	2.E-07	2.5E+14	yes
10 µm focus	200 µJ	1 ps	200 MW	1E+06	10 µm	8.E-07	2.5E+14	yes
20 µm focus	1 mJ	1 ps	1 GW	1E+09	20 µm	3.E-06	3.2.E+14	yes

Nonlinearity limits in fiber amplifier: **10**¹⁰ W/cm²

Glass breakdown threshold due to instantaneous E field in laser: ~ 10^{13} W/cm²

Solid-core fiber (conventional fiber) <u>cannot</u> transmit the ultrafast pulses

200 MW peak power, 20 μ m mode-field \rightarrow 5×10¹³ W/cm² Much above nonlinearity and damage thresholds

Hollow-core fiber for light pulse delivery

"Photonic bandgap guiding" instead of TIR
Anti-resonant in cladding, light guiding in hollow core:
damage ↓↓, nonlinearity ↓↓↓

P. Russell, Science 2003

PT photonics product catalog

Hollow-core delivery up to GW peak power

Eilzeret al., MDPI Fibers, 2018

Micron-Scale Electron Accelerator at the tip of endoscope

Summary: Micron-scale electron accelerator at the tip of endoscopy

- 1. Near-critical density Laser Wakefield Acceleration → low energy electrons (>10 keV, < MeV) at endoscopic treatment site
- 2. Fiber laser as compact source up to Gigawatt
- 3. Explore innovations flexible light transport to deliver 10¹⁴ W/cm² to micro-electron accelerator

Recent publications:

T. Tajima and P. Chen, eds. Progress of Laser Accelerator and Future Prospects (MDPI, Basel, 2023). https://www.mdpi.com/journal/photonics/special_issues/Laser_Accelerator