
CLINICAL POTENTIAL OF LASER WAKEFIELD ACCELERATOR ELECTRON BEAM SOURCES: A THOUGHT EXPERIMENT

Jeffrey V. Kuo, MD, MA Department of Radiation Oncology February 7, 2025

	COMPARED TO A LWFA RADIATION SOURCE						
	Linear accelerator or teletherapy unit	Radionuclide brachytherapy	Electronic brachytherapy (intra-op or intravascular)				
Device size	Much much larger (req. shielded vault)	Larger (comparable to check in luggage)	Comparable (comparable to carry on luggage or personal item)				
Applicator size	e Larger (external only)	Larger (3.5 x 0.9 mm seeds)	Comparable (0.38 mm diam)				
Portability	Not at all	Not at all	A little				
Dose rate	Much lower	Much lower	Much lower				
Directional	Ν	Ν	Ν				
Pulse control / modulation	N	Ν	Ν				
Cost (est.)	Much much higher	Higher	Higher				
Disciplinary jurisdiction	Radiation oncology	Radiation oncology	Radiation oncology				
Regulatory jurisdiction	State	NRC	State				

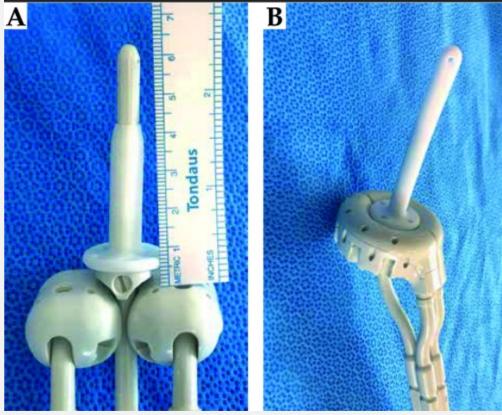
WHAT CAN YOU DO WITH A NOVEL (LWFA) SOURCE?

	Replace existing radiation technology	Replace other technology	New applications
Indications	Same	Same or new	New
Toxicities	Less	Same or less	TBD
Cost	Same or less	Same or less	TBD
Example(s)	 Radionuclide brachytherapy IOERT Superficial electron therapy 	 Cardiac arrythmia ablation Radiofrequency ablation 	• TBD

Perspective

Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments

Dante Roa^{1,*}, Jeffrey Kuo¹, Harry Moyses¹, Peter Taborek², Toshiki Tajima², Gerard Mourou³ and Fuyuhiko Tamanoi 4,50


- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine-Medical Center, 101 The City Drive, B-23, Orange, CA 92868, USA; jvkuo@hs.uci.edu (J.K.); mikemovses@hotmail.com (H.M.)
- 2 Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; ptaborek@uci.edu (P.T.); ttajima@uci.edu (T.T.)
- Ecole Polytechnique, 91128 Paliseau, France; gerard.mourou@polytechnique.edu
- 4 Institute for Integrated Cell-Materials Science, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; tamanoi.fuyuhiko.2c@kyoto-u.ac.jp
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Correspondence: droa@hs.uci.edu

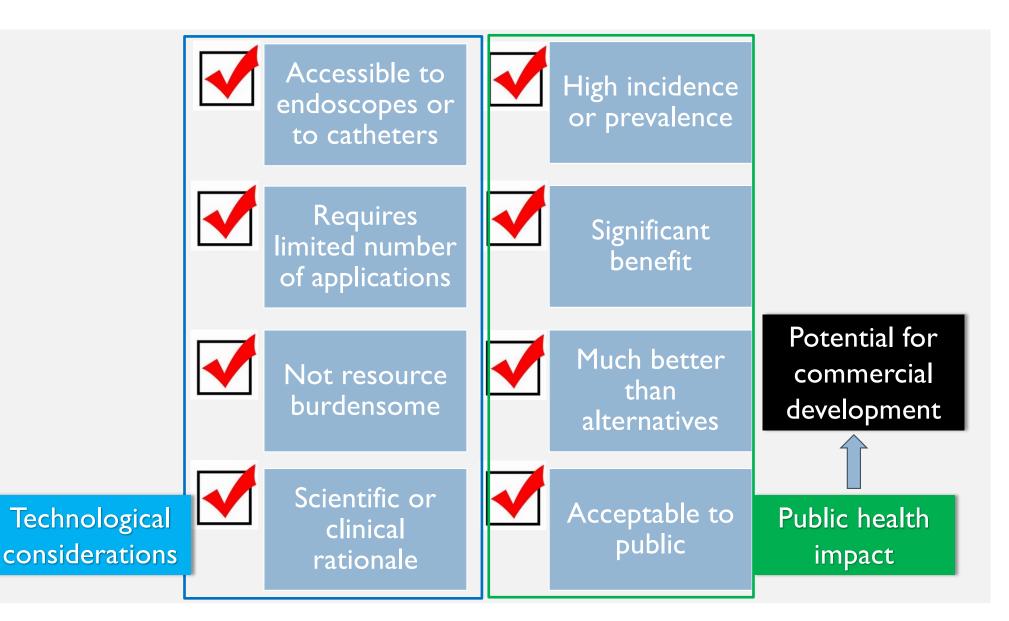
Abstract: Ultra-compact electron beam technology based on laser wakefield acceleration (LWFA) could have a significant impact on radiotherapy treatments. Recent developments in LWFA highdensity regime (HD-LWFA) and low-intensity fiber optically transmitted laser beams could allow for cancer treatments with electron beams from a miniature electronic source. Moreover, an electron beam emitted from a tip of a fiber optic channel could lead to new endoscopy-based radiotherapy, which is not currently available. Low-energy (10 keV-1 MeV) LWFA electron beams can be produced by irradiating high-density nano-materials with a low-intensity laser in the range of $\sim 10^{14}$ W/cm². This energy range could be useful in radiotherapy and, specifically, brachytherapy for treating superficial, interstitial, intravascular, and intracavitary tumors. Furthermore, it could unveil the next generation of high-dose-rate brachytherapy systems that are not dependent on radioactive sources, do not require specially designed radiation-shielded rooms for treatment, could be portable, could provide a selection of treatment energies, and would significantly reduce operating costs to a radiation oncology clinic.

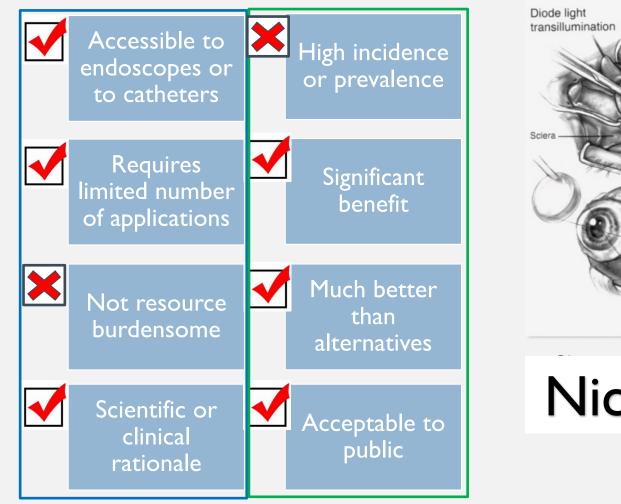
Keywords: LWFA; fiber optics; medicine; brachytherapy; cancer

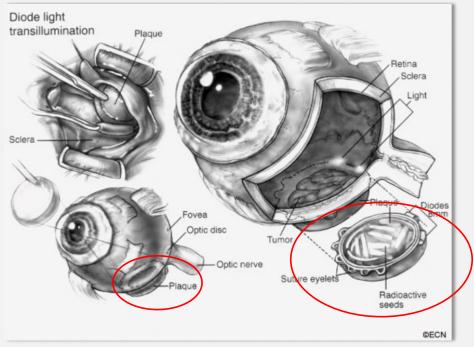
Citation: Roa, D.; Kuo, J.; Moyses, H.; Taborek, P.; Tajima, T.; Mourou, G.; Tamanoi, F. Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. Photonics 2022, 9, 403. https:// doi.org/10.3390/photonics9060403

Mehta S, et al. J Contemp Brachytherapy, 2019.

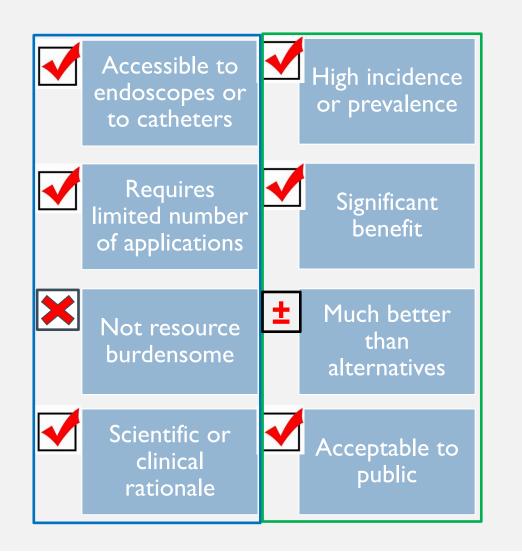
	LWFA	¹⁹² IR	⁶⁰ Co	Electronic
Capital cost (est.)	\$100-300K	\$200-350K	\$300K	
Room shielding	None	\$200-500K	\$300-500K	None
Source replacement	None	\$10K q4-6 mo	\$130K q60 mo	None
5-yr estimated total	\$300K	\$910K	\$930K	
Main indications	TBD	Gyn brachytherapy	Gyn brachytherapy	Breast brachytherapy


Adapted from Roa, et al. Photonics, 2022

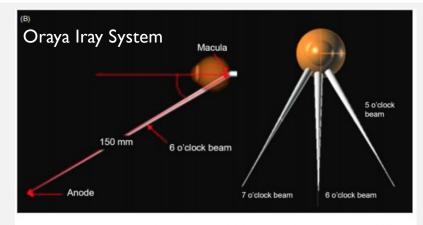


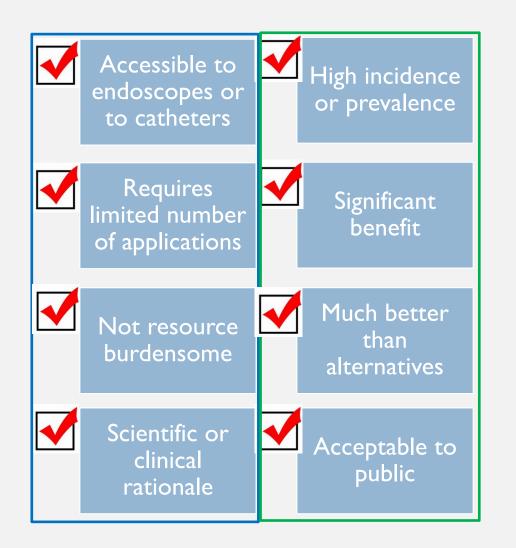

Murakami, et al. J Contemp Brachytherapy, 2016

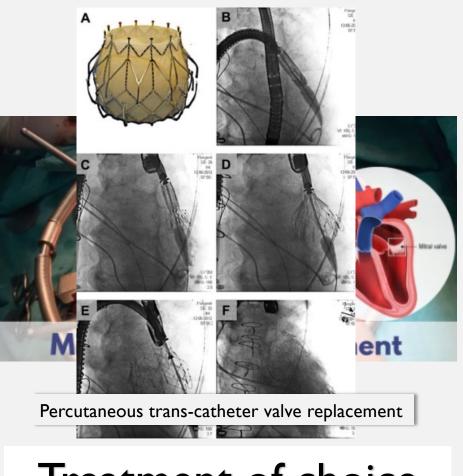
Possible clinical uses for a novel radiation source


everything is something else worth treating

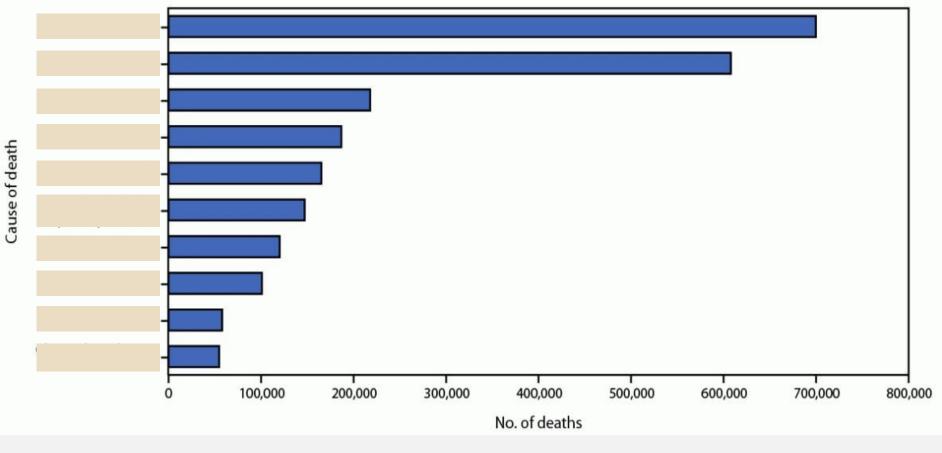
Niche technology

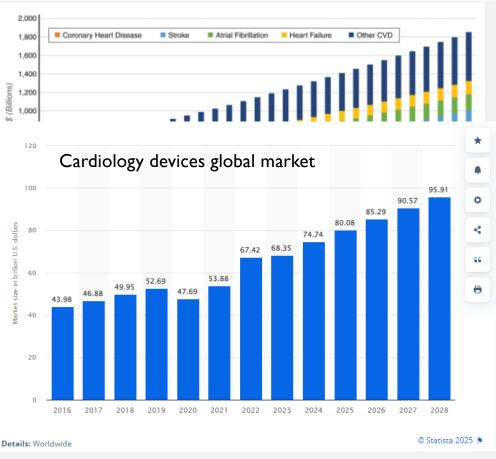



Figure 1. Schematic of eye and treatment geometry. Top: geometric description of the stylized MCNPX eye model employed in this study. Bottom left: sagittal view with the 6 O'clock beam in isolation. Bottom right: frontal view with all three treatment beams.

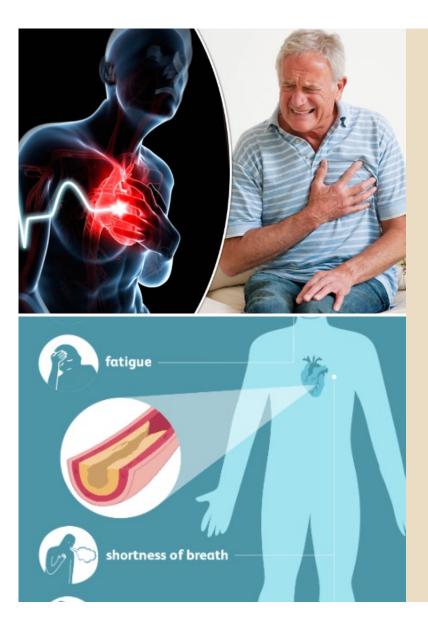

Cantley, et al. Physics Med Biol, 2013

Hand Grips & Interlocks I-Guide Holder & Micro-manipulator


Overlooked technology


Treatment of choice

Leading causes of mortality in the U.S. (2022)



Provisional Mortality Data – U.S., 2022 MMVVR

Potential opportunities

CORONARY ARTERY DISEASE

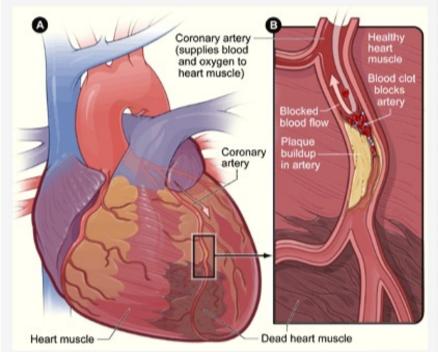


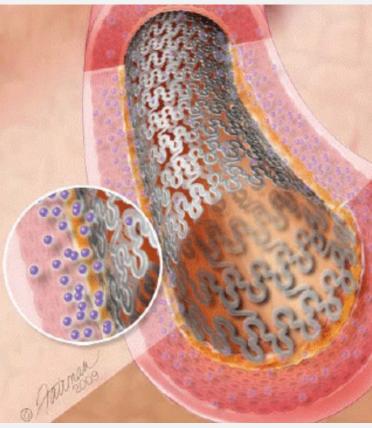
Figure A is an overview of a heart and coronary artery showing damage (dead heart muscle) caused by a heart attack. Figure B is a cross-section of the coronary artery with plaque buildup and a blood clot.

SOURCE: National Heart, Lung, and Blood Institute, National Institutes of Health

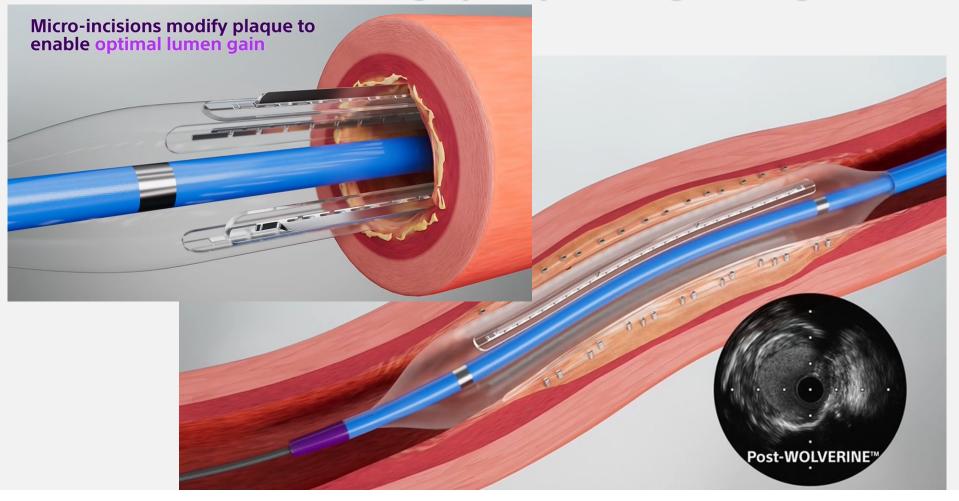
Angioplasty = repair of the blood vessel

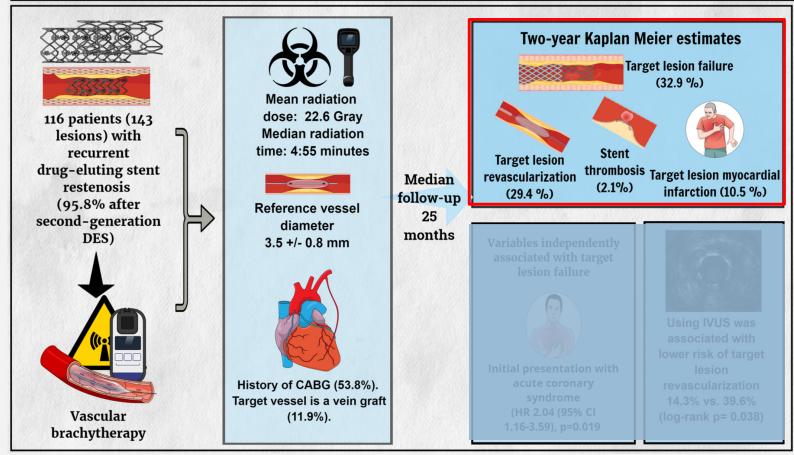
With coronary angioplasty, a thin, expandable balloon is inserted into the clogged artery and is inflated. This opens the artery by pushing the plaque against the artery wall. The balloon is then removed and blood flows more easily through the artery.

American Heart Association.


Restenosis ~50%

Restenosis ~10-20%


Ash heap of history


~60K angioplasties x 8% = 4800 per year

In stent failure after angioplasty + drug eluting stent?

Study	Year	-	Angiographic Stenosis, %	Stent Type	Pattern of ISR, % (n)	Treatments	DAPT Type and Duration	Follow-Up	Study Finding
PEPCAD DES ¹¹²	2012	110	≥70 or ≥50 and ischemia	DES	Focal: 52.1 (111); diffuse: 43.7 (93); proliferative: 4.2 (9)		Aspirin 100 mg daily indefinitely + clopidogrel 75 mg daily for 6 mo	6 mo	 LLL: 0.43 ± 0.61 mm vs 1.03 ± 0.77 (P < 0.001) Restenosis: 17.2% vs 58.1% (P < 0.001) MACE: 16.7% vs 50.0% (P < 0.001)
ISAR DESIRE 3 ⁷¹	2013	402	≥50	DES	Focal: 66.8 (334); diffuse: 27.6 (138); proliferative: 1.4 (7); occlusive: 4.2 (21)	and PEB/ PES vs PB	Aspirin 200 mg daily indefinitely + oral platelet ADP-receptor antagonist ≥6 mo	Angiographic: 6-8 mo; clinical: 12 mo	 Diameter stenosis (PEB vs PES): 38.0% vs 37.4% (P for noninferiority = 0.011) Diameter stenosis (PB): 54.1% (P for superiority [PEB and PES vs PB]: <0.0001 for both comparisons)
Habara et al ⁶⁷	2013	210	≥50%	BMS (58%) DES (42%)	Focal: 52.1 (111); diffuse: 43.7 (93); proliferative: 4.2 (9)	PCB vs PB	Aspirin 100 mg daily + ticlopidine 200 mg daily or clopidogrel 75 mg daily for ≥3 mo	Angiographic and clinical: 6 mo	 TVF: 6.6% vs 31.0% (P < 0.001) Restenosis: 4.3% vs 31.9% (P < 0.001) LLL: 0.11 ± 0.33 vs 0.49 ± 0.50 mm (P < 0.001)
PEPCAD China ISR ⁹⁴	2014	215	≥70 or ≥50 and ischemia	DES	Focal: 63.3 (140); diffuse: 19.5 (43); proliferative: 15.4 (34); occlusive: 1.8 (4)	PCB vs PES	Aspirin 100 mg daily indefinitely + clopidogrel 75 mg daily for ≥12 mo	Angiographic: 9 mo; clinical: 12 mo	 9-mo in-segment LLL: 0.46 ± 0.51 vs 0.55 ± 0.61 mm (P for noninferiority = 0.0005) 12-mo TLF: 16.5% vs 16.0% (P = 0.92)
DARE ¹¹³	2018	278	>50	DES	Focal: 42.4 (118); diffuse: 27 (75); proliferative: 6.5 (18); occlusive 5 (14)	PEB vs EES	Aspirin for lifelong + P2Y ₁₂ inhibitor for 12 mo	6 mo;	 In-segment MLD: 1.71 ± 0.51 vs 1.74 ± 0.61 (P = 0.65) MACE: 10.9% vs 9.2% (P = 0.66)
BIOLUX ¹¹⁴	2018	229	>50	DES	Focal: 68.8 (167); diffuse: 28 (68); proliferative: 2.5 (6); occlusive: 0.4 (1)	PCB vs EES	Aspirin + P2Y ₁₂ inhibitor per local standard practice	Angiographic: 6 mo; clinical: 12 mo	 In-stent LLL: 0.03 ± 0.40 vs 0.20 ± 0.70 mm (difference: -0.17 ± 0.52 mm; <i>P</i> for noninferiority < 0.0001) TLF: 16.7% (95% CI: 11.6% -23.7%) vs 14.2% (95% CI: 7.9% -24.7%; <i>P</i> = 0.65)

Outcomes of vascular brachytherapy for recurrent drug-eluting stent restenosis

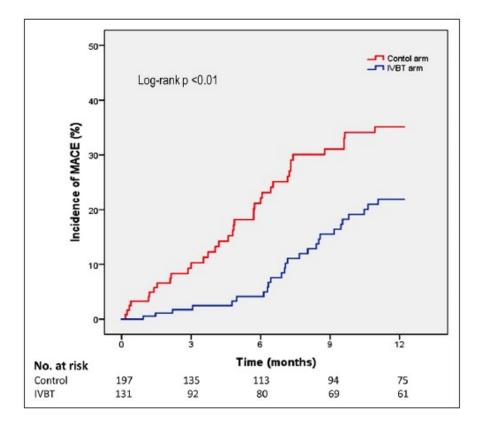
Cathet Cardio Intervent, Volume: 97, Issue: 1, Pages: 32-38, First published: 13 January 2020, DOI: (10.1002/ccd.28716)

ORIGINAL ARTICLE

Intravascular Brachytherapy for the Management of Repeated Multimetal-Layered Drug-Eluting Coronary Stent Restenosis

See Editorial by Kleiman

BACKGROUND: Because of the widespread acceptance of percutaneous coronary intervention with drug-eluting stents as an effective treatment strategy for in-stent restenosis, it is common to encounter multimetal layer stent restenosis in the recent years. This study aimed to evaluate the clinical outcomes of such patients treated with intravascular brachytherapy (IVBT) in comparison with other percutaneous options.


Mithun J. Varghese, MD* Samit Bhatheja, MD* Usman Baber, MD, MS Safwan Kezbor, CCRP Aditi Chincholi, MBBS Surbhi Chamaria, MD Michael Buckstein, MD Richard Bakst, MD Annapoorna Kini, MD, MRCP

Clinical Outcomes at 1-Year Follow-Up

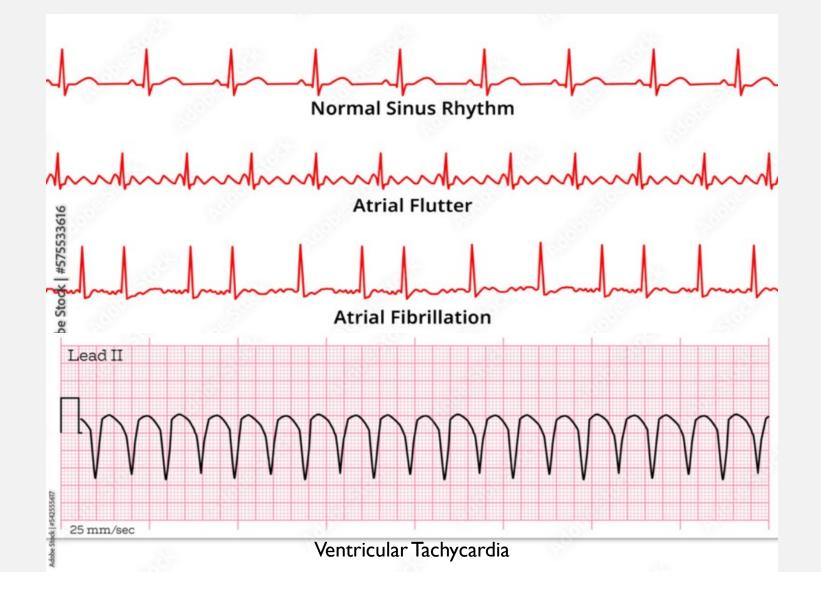
METHODE AND DECLIFE Me smalled actions

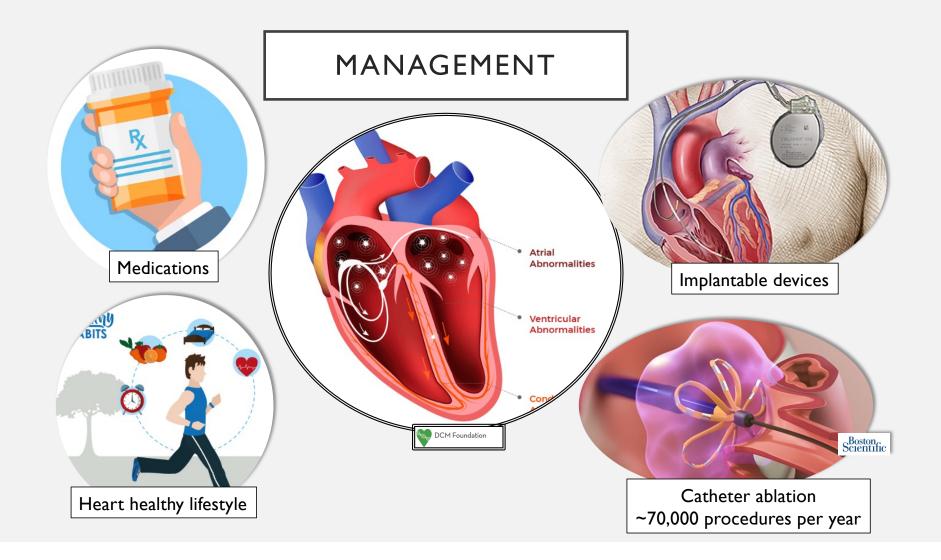
	Tota	l Study Populatio	n	Propensity-Matched Cohort		
,	IVBT (n=197)	Control (n=131)	P Value	IVBT (n=91)	Control (n=91)	Hazard Ratio (95% CI)
	21 (10.7)	29 (22.1)	0.07	11(12.1)	22 (24.2)	0.48 (0.23–1.00)
	30 (15.2)	30 (22.9)	0.33	16 (17.6)	23 (25.3)	0.69 (0.36–1.33)
	6 (3.0)	9 (6.9)	0.13	1 (1.1)	6 (6.6)	0.14 (0.02–1.22)
	2 (1.0)	2 (1.5)	0.93	1 (1.1)	1 (1.1)	1.16 (0.07–19.07)
	2 (1.0)	6 (4.6)	0.09	1 (1.1)	4 (4.4)	0.14 (0.01–1.53)
1	8 (4.1)	12 (9.2)	0.10	2 (2.2)	8 (8.8)	0.16 (0.03-0.86)
leath	35 (17.8)	38 (29.0)	0.09	17 (18.7)	29 (31.9)	0.51 (0.27–0.94)
	26 (13.2)	37 (28.2)	0.01	12 (13.2)	28 (30.8)	0.37 (0.18-0.73)

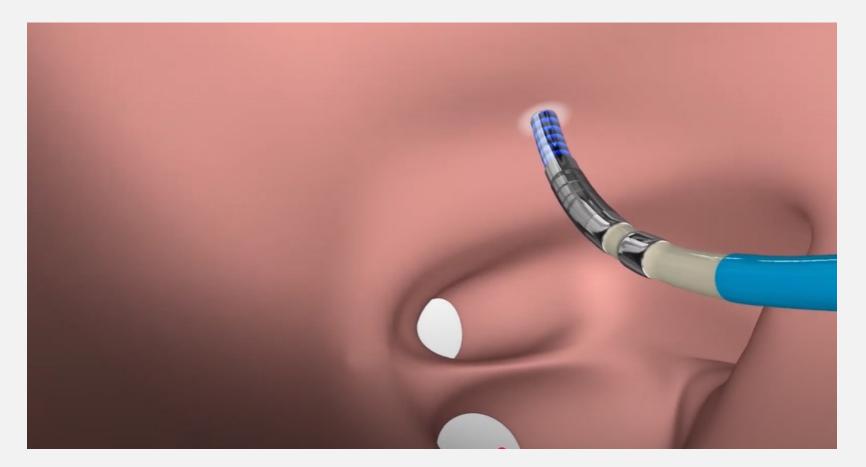
vas defined as a composite of death from any cause, MI, and target vessel revascularization. IVBT indicates ir apy; MACE, major adverse cardiac events; MI, myocardial infarction; ST, stent thrombosis; TLR, target lesion revasc arget vessel revascularization.

TECHNOLOGY REPLACEMENT

Radionuclide brachytherapy


WHAT CAN YOU DO WITH A NOVEL RADIATION SOURCE?


	Replace existing radiation technology	Replace other technology	New applications
Indications	Same	Same or new	New
Toxicities	Less	Same or less	TBD
Cost	Same or less	Same or less	TBD
Example(s)	 Radionuclide brachytherapy IOERT Superficial electron therapy 	 Cardiac arrythmia ablation Radiofrequency ablation 	• TBD


NON DESTRUCTIVE ABLATION FOR CARDIAC ARRYTHMIAS

0:19 intro 2:20 ventricular

0:40 to 1:26

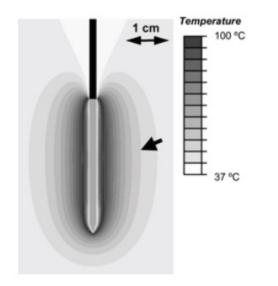
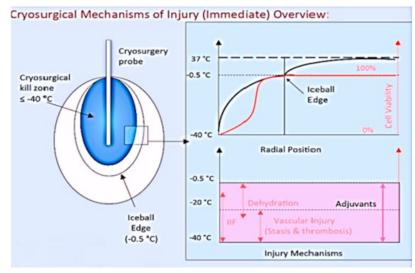
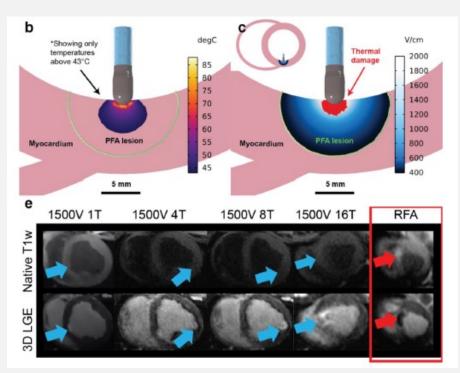



FIGURE 3. Tissue-temperature profile from a computer simulation at the end of a 12-min RF ablation with a cooled-needle electrode (same as in Fig. 8B). The black part of the electrode is electrically insulated, and heating due to RF current results around the exposed metal electrode (electrode tip, shown in gray). Black arrowhead marks the boundary of the ablation zone (~50°C).


Haemmerich, D. Critical Reviews in Biomedical Engineering, 2010

Radio frequency ablation

Avitall, B and Kalinski, A. Heart Rhythm, 2015

Cryosurgery

Dukkipati, et al. J Am Coll Cardiology, 2017

Pulsed field ablation

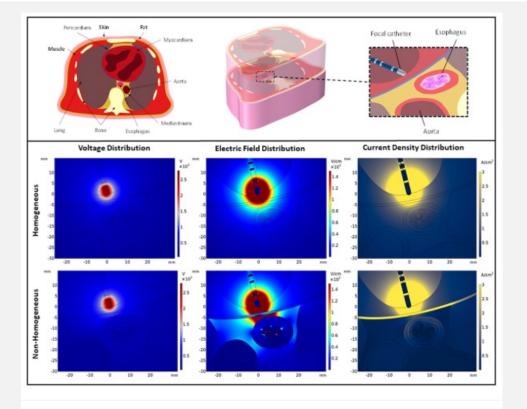
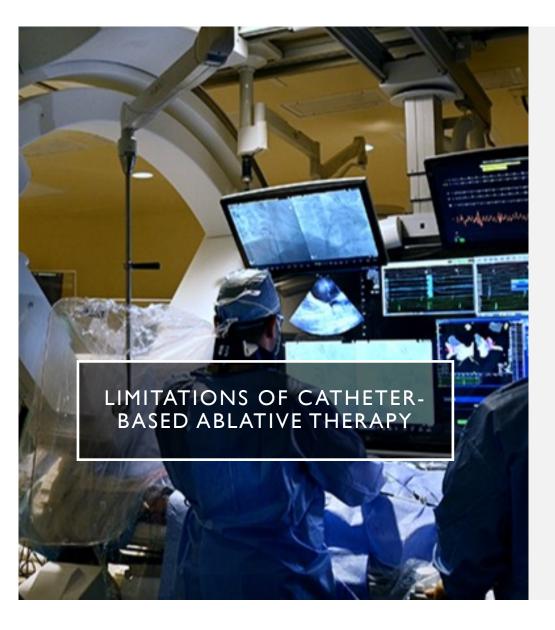



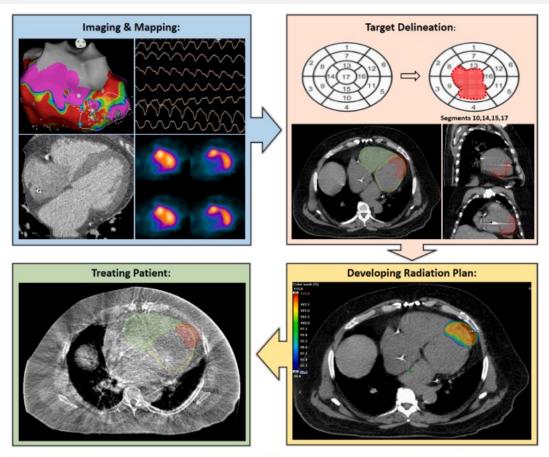
Figure 5. Numerical simulation of heterogeneous tissue environment. Top, A numerical simulation is generated to represent human anatomic geometry, with a representative monopolar focal ablation catheter placed on the posterior wall of the left atrial. Voltage, electric field, and current density distributions for homogeneous (center) and heterogeneous (bottom) tissue electrical properties from a clinically relevant pulsed electrical field delivered protocol, demonstrating the distributive nature of the pericardial fluid surrounded by the pericardial sac. Verma, et al., Circulation:Arrhythmia and Electrophysiology 2017

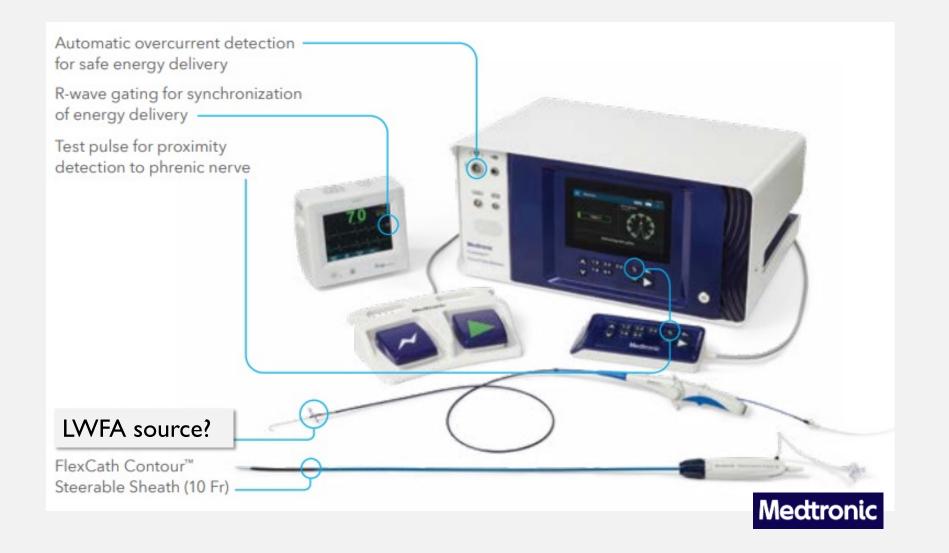
- Prior ablations insufficiently effective
- Unable to reach target substrate(s)
- Proximity of target substrate(s) to critical structures
- Size of target substrate(s)
- Physiologically unable to tolerate cath procedure

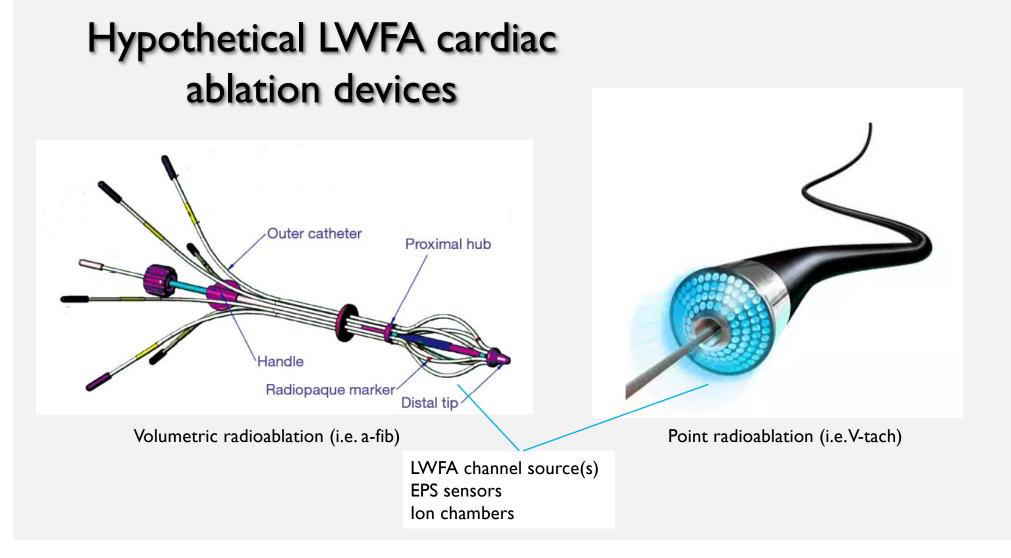
NON DESTRUCTIVE TISSUE ABLATION?

Elekta

0

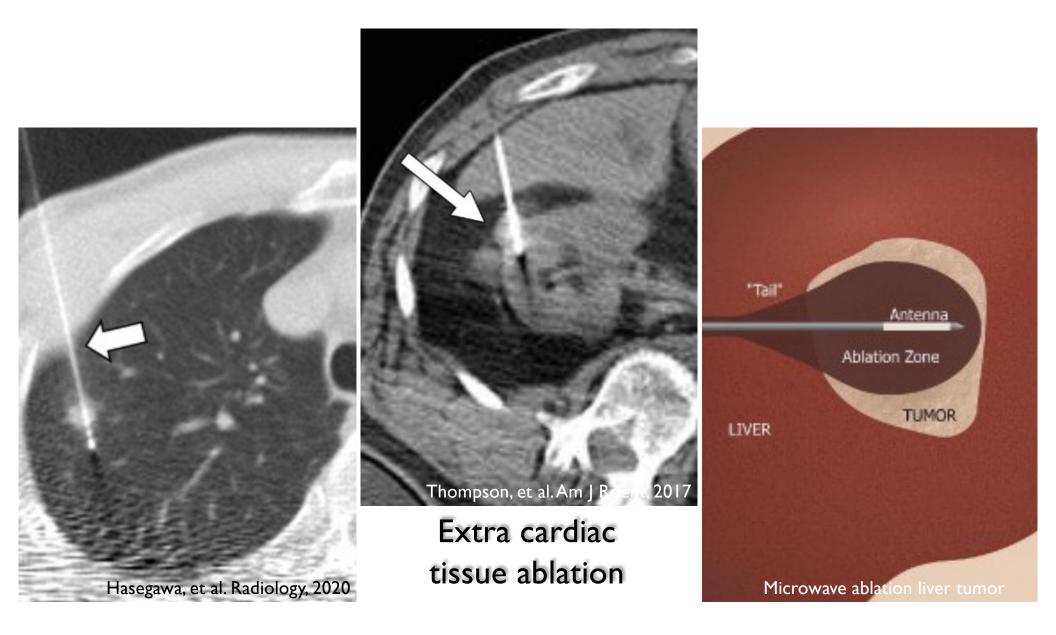


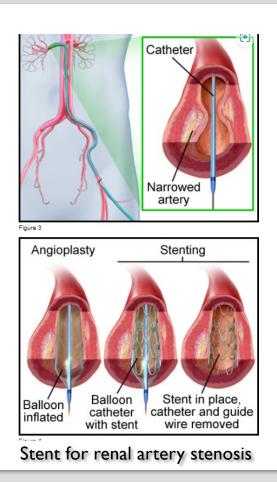

Fig. 3. Cardiac Radioablation Treatment Workflow. Blue Panel: Identifying and Mapping the CRA Target. In clockwise order, non-invasive EKG, SPECT, Cardiac CT w/ contrast, and endocardial catheter-based voltage map used to localize the ventricular scar prior to radiation planning. Orange Panel: Target Delineation. Top panel shows 17-segment left ventricular model targeting 4 segments identified during mapping. Bottom panel with radiation therapy planning software showing PTV (red) contoured within the left and right ventricle. Yellow Panel: Developing a Radiation Plan. External beam planning software showing dose color wash of PTV (red) from 80 to 110% of prescription dose. Green Panel: Treating the Patient. Aligning PTV using cone beam CT on the day of treatment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

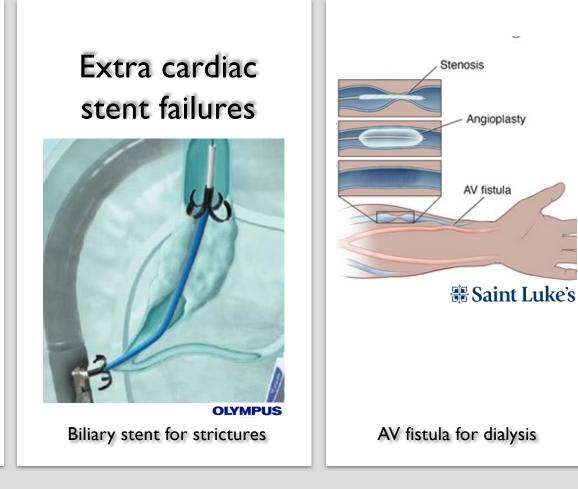

Siedow, et al. Clinical Translational Radiation Oncology, 2021

Study	N (evaluable)	VT burden definition used for this analysis	Adjusted time frame for VT burden reduction calculation	≥95% VT burden reduction, % (n)	≥75% VT burden reduction, % (n)	≥50% VT burden reduction, % (n)
Robinson et al ¹	18	ICD-treated VT episodes or 24-h PVC burden	6 mo before STAR compared with 6 mo after, excluding events in the first 6 wk	61% (11)	89% (16)	94% (17)
Molon et al ^{21,*}	5	ICD-treated VT episodes	6 mo before STAR compared with 6 mo after, excluding events in the first 4 wk	60% (3)	60% (3)	100% (5)
Amino et al ²⁵	3	Treated VT episodes		67% (2)	67% (2)	67% (2)
Arkles et al ¹⁹	12	Treated VT episodes	6 mo before STAR compared with 6 mo after, excluding events in the first 6 wk	75% (9)	83% (10)	83% (10)
van der Ree et al ^{24,} *	6	Treated VT episodes		33% (2)	100% (6)	100% (6)
Gianni et al ¹⁸	4†	ICD-treated VT episodes	3 mo before STAR compared with 6 mo after, excluding events in the first 3 mo	25% (1)	25% (1)	75% (3)
Carbucicchio et al ²⁰	4	ICD-treated VT/VF episodes	3 mo before STAR compared with 6 mo after, excluding events in the first 3 mo	50% (2)	100% (4)	100% (4)
Miszczyk et al ^{23,*}	9†	ICD-treated VT episodes	3 mo before STAR compared with 6 mo after, excluding events in the first 3 mo.	80% (8)	80% (8)	90% (9)
Chang et al ²⁶	0	n/a	n/a	n/a	n/a	n/a
Krug et al ²²	õ	n/a	n/a	n/a	n/a	n/a

 $\label{eq:CD} ICD = implantable cardioverter-defibrillator; n/a = not applicable/available; PVC = premature ventricular contraction; STAR = stereotactic arrhythmia radioablation; VF = ventricular fibrillation; VT = ventricular tachycardia. *Additional data retrieved for this analysis through correspondence with the authors. *One patient was excluded because of the lack of treated VT episodes during the pre-STAR period within the adjusted time frame.$

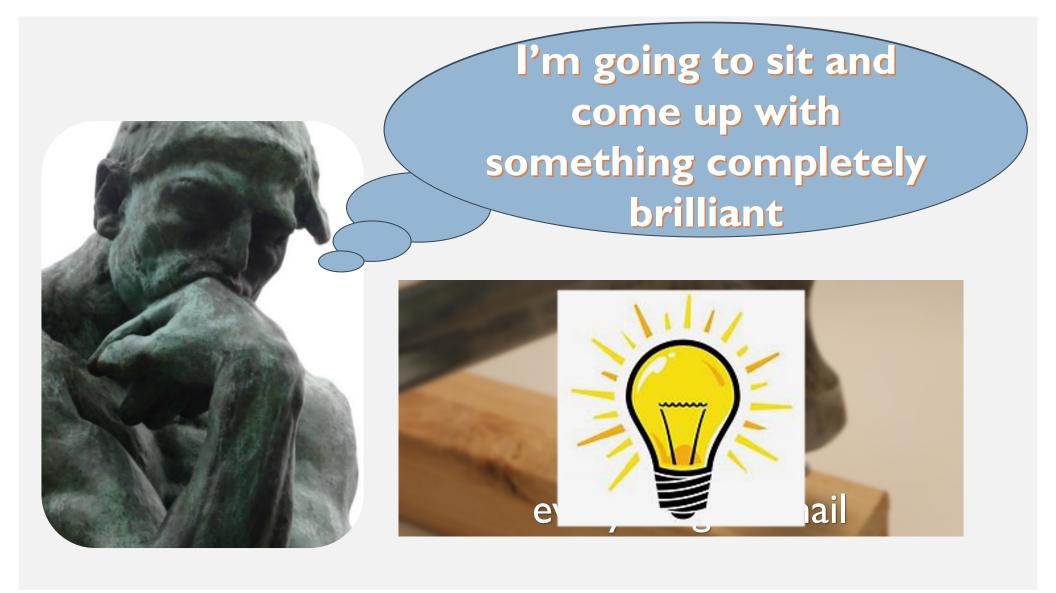

Micsuk, et al Heart Rhythm, 2024

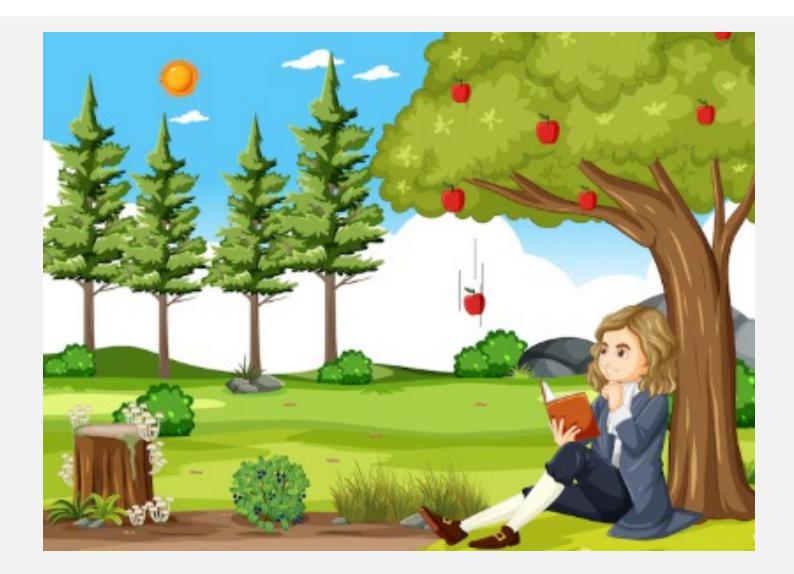




Non destructive arrhythmia radio-ablation

- EPS mapping and treatment in single procedure
- Fewer contraindications than tissue destructive techniques
- Precise control of ablation volume
- Less resource burdensome





WHAT CAN YOU DO WITH A NOVEL RADIATION SOURCE?

	Replace existing radiation technology	Replace other technology	New applications
Indications	Same	Same or new	New
Toxicities	Less	Same or less	TBD
Cost	Same or less	Same or less	TBD
Example(s)	 Radionuclide brachytherapy IOERT Superficial electron therapy 	 Cardiac arrythmia ablation Radiofrequency ablation 	• TBD

Note: everything here is speculation

Physical dimensions

- Miniature applicators
- Inside/along endoscope
- Inside/ along vascular catheter
- Handheld applicator

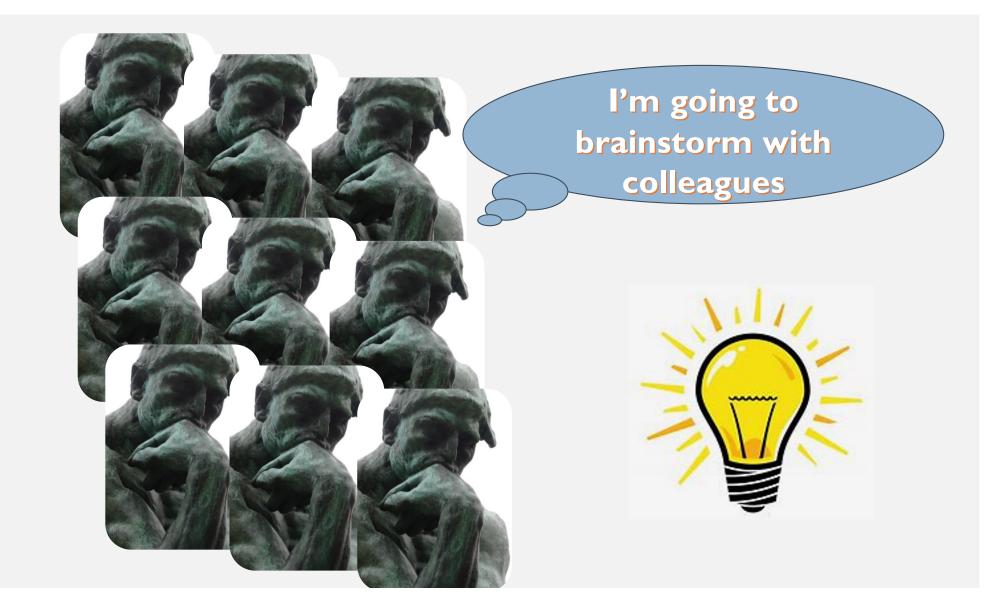
Power source

- No cooling system
- Wearable battery pack
- Implantable
- Autonomous (mobile) unit

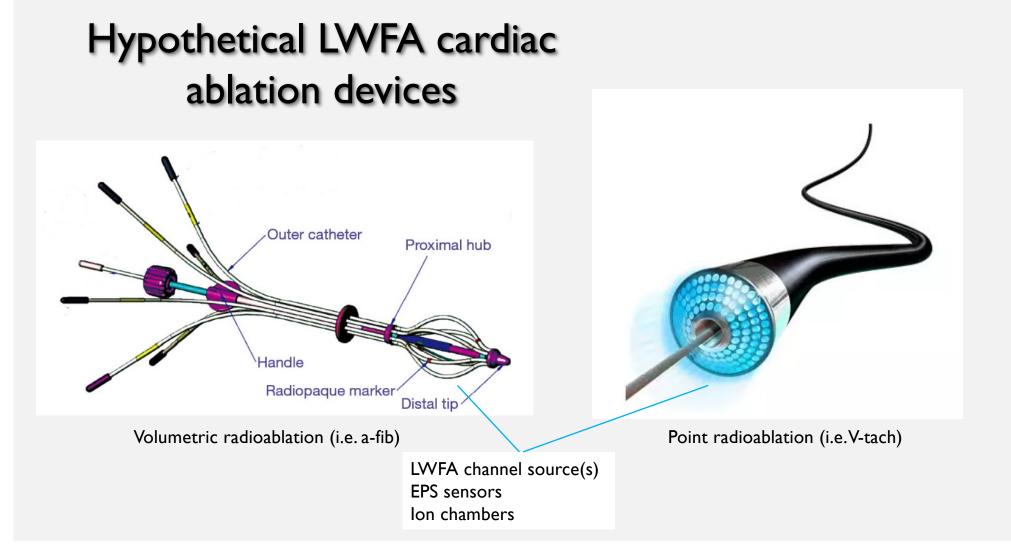
Beam geometry

- Directional
- Steerable
- Dynamic control
- Point, line, plane, volume

Beam quality


- Tunable
- Control pulse shape, duration, frequency
- Pulse rate
- Dynamic control

Electron beam activates clinical agent


- X-ray production (brehmstrahlung)
- Plasma produced by electron ionization
- In vivo polymeric biomaterial synthesis
- Anti-infective activity

Jurisdiction

- LWFA specific training for non radiation oncologists
- · Regulated more like laser than radionucildes

