Radiotherapy Application of High-Density Laser Wakefield Acceleration (LWFA)

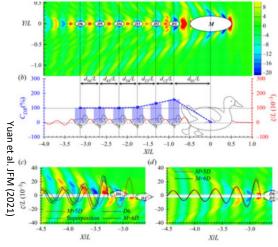
T. Tajima

Department of Physics and Astronomy, University of California at Irvine, CA, 92697 USA

Acknowledgements:

- D. Roa, W. J. Sha, D. Strickland, S. Nicks, E. Barraza,
- G. Mourou, F. Tamanoi, T. Ebisuzaki, H. Moyses,
- P. Taborek, V. Shiltsev, T. Kawachi

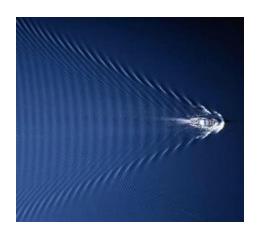
Table of contents


Toward laser wakefield accelerator (LWFA) at the tip of endoscope

- 1. Wakefields: in nature and laser-driven (LWFA, 1979)
- 2. High energy LWFA → nonrelativistic LWFA
- 3. Near critical density LWFA → beat wave approach
- 4. Fiber laser technology
- 5. Endoscopic fiber electron radiotherapy (2022)

Wake

Wake by a duck
Nature (or mother duck) shows us.

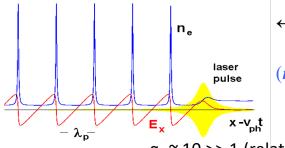


With low phase velocity More particle trapping

Laser Wakefield (LWFA):

Wake phase velocity >> water movement speed maintains coherent and smooth structure

Tsunami phase velocity becomes ~0, causes easier trapping and acceleration of more #



VS

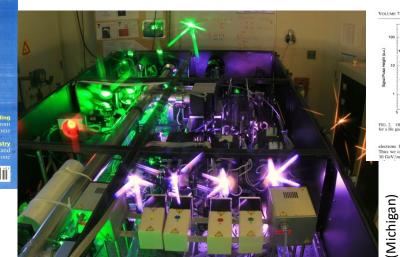
Strong beam (of laser / particles) drives plasma waves to saturation amplitude: $E = m\omega v_{ph}/e$ No wave breaks and wake <u>peaks at v≈c</u>

Multiple of waves at v < c

← relativity
regularizes
(relativistic coherence)

 $a_0 \sim 10 >> 1$ (relativistic wave)

Tajima-Dawson field $E = m\omega_p c / e \ (\sim \text{GeV/cm})$


Theory of wakefield from extreme high energies

to nanoscopic accelerator

$$\Delta E \approx 2m_0c^2a_0^2\gamma_{ph}^2 = 2m_0c^2a_0^2\left(\frac{n_{cr}}{n_e}\right), \quad \text{(when 1D theory applies Tajima / Dawson, 1979)}$$
 In order to avoid wavebreak,
$$a_0 < \gamma_{ph}^{1/2}, \quad \text{where}$$

$$\gamma_{ph} = [n_{cr}(\omega)/n_e]^{1/2}$$

$$n_{cr} = 10^{21}/\text{cc} \text{ (1eV photon)}$$

$$n_e = 10^{16-19} \text{ (gas)} \longrightarrow 10^{21}/\text{cc} \text{(porous solid)}$$

$$L_d = \frac{2}{\pi}\lambda_p a_0^2\left(\frac{n_{cr}}{n_e}\right), \quad L_p = \frac{1}{3\pi}\lambda_p a_0\left(\frac{n_{cr}}{n_e}\right),$$
 dephasing length pump depletion length

Demonstration (1994), realization, and applications

of laser wakefield accelerators (1979)

VOLUME 74, NUMBER 22 PHYSICAL REVIEW LETTERS 29 May 199

3.0 TW(1 ps), 40 (900 ps)

2.0 10¹⁰

W/cm²

2.0 10¹⁰

W/cm²

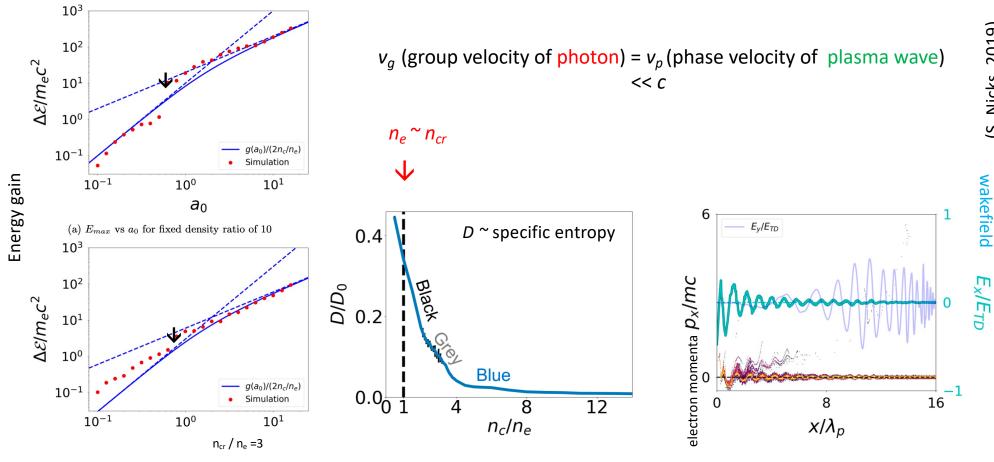
2.0 10¹⁰

W/cm²

2.0 Observed momentum spectra of accelerated electrons for a life gas the bock pressure 7 see the plasma wave. Thus we can infer the peaks accelerating field gradient of 30 GeV/m.

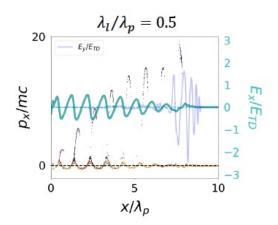
First expt: Nakajima, et al (1994, 1995)

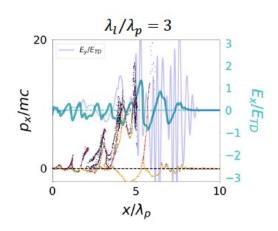
Theory: Tajima-Dawson (1979)

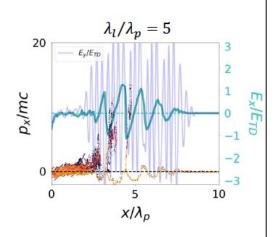

Dream beam

(2004)

Transition to $a_0 < 1$ regime Transition to near-critical density $n_e \sim n_{cr}$

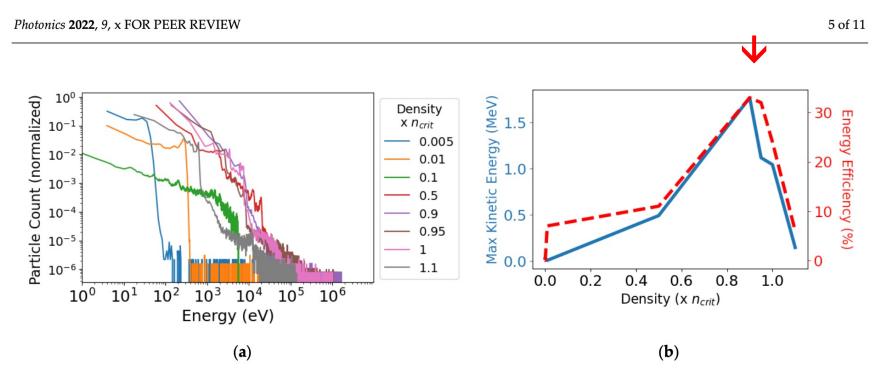

LWFA in low energy high-density regime


S. Nicks et al. Int. J. Mod. Phys. A34, 1934019 (2019).


Self-Modulation

Fiber lasers → long pulse better

- Pulse length λ_l/λ_p scanned, $n_c/n_e=10,\,a_0=1$
- Self-modulation: long pulse breaks → small pulses
 Long pulses → Laser/wakefield modulated



Simulation study: low intensity laser near critical density

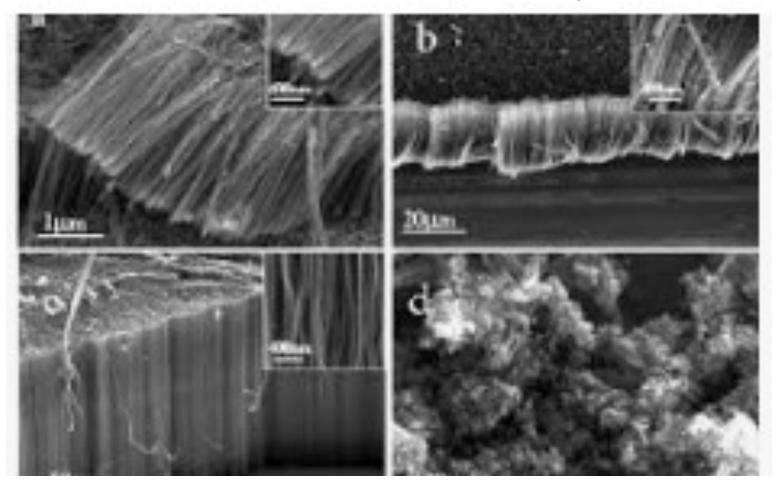

Barraza, Tajima, Strickland, Roa (Photonics, 2022)

Figure 3. Energy distributions, maximum kinetic energies, and laser to total particle energy efficiency with respect to plasma density for BWA simulations after 1 ps using gaussian lasers with intensities of $a_1 = 0.1$ and pulsewidth of 100 fs. The cood laser wavelength was held at $\lambda = 1$ up

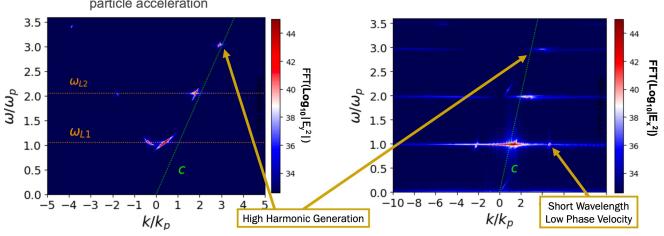
Carbon nanotubes on a substrate:

→ toward Carbon Nanoforest (instead of plasma w/vacuum)

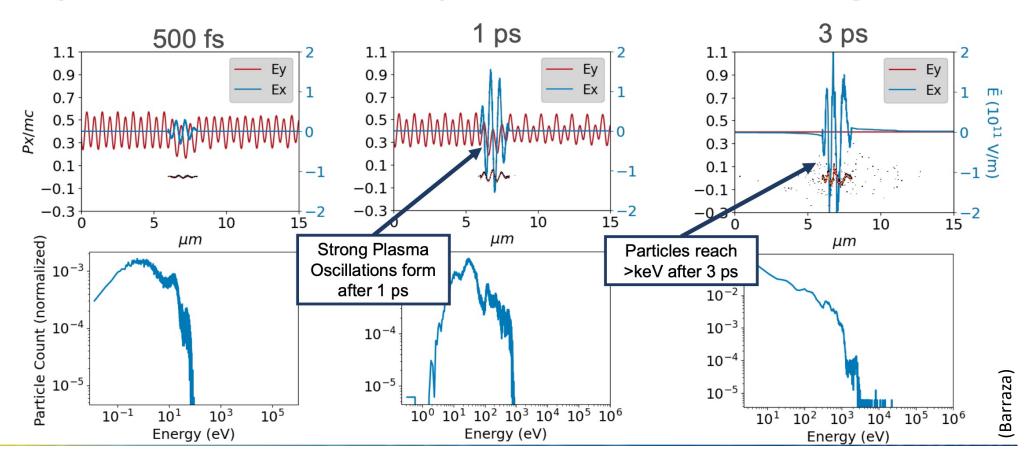
Laser Wakefield Acceleration near critical density

Near critical density $\sim n_e = 10^{21}/\text{cc}$

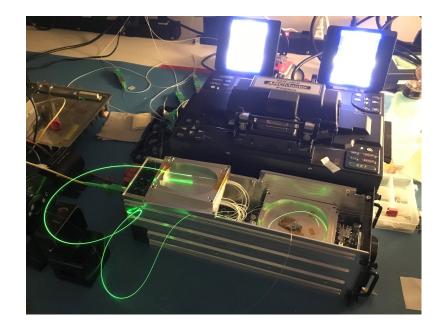
Excitation of electron acceleration possible with $I \sim 10^{14} \, \mathrm{W} \, / \, \mathrm{cm}^3$


gaseous plasma → solid nanotube

Coupling gets stronger near $n_e = 10^{21}/\text{cc}$ \leftarrow overlap of plasma waves with different v_p \leftarrow curved laser ω (k), varied v_q


Dispersion Relation: FFT(Log₁₀E)

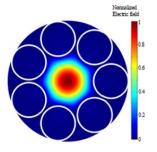
- High Harmonic Generation
- Short Wavelength and Low Phase Velocity Electrostatic Waves allow for more efficient particle acceleration

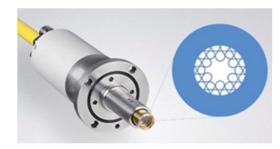


Target Foil Simulations in time: $a_0 = 0.007 \rightarrow 10^{14} W/cm^2$ with 2 µm Target

Free-Space Laser vs. Fiber Laser

Fiber laser technology

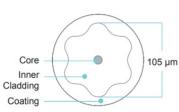

Application	Average Power	Pulse Width	Peak Power	Spatial Mode	Focused Intensity
Metal cutting (heat)	1 to 100 kW	Continous	same as average	MM	10 ⁷ W/cm ² (CW)
Semiconductor Processing	10 to 1000 W	1 to 100 ns	MW (10 ⁶ W)	MM/SM	10 ⁹ W/cm² (peak)
Glass cutting (cold ablation)	> 10 W	≤ 0.5 ps	Hundreds of MW	SM	10 ¹³ W/cm² (peak)
Portable LWFA (>10 keV eletrons)	1 to 10 W	≤ 1 ps	≥ GW (10 ⁹ W)	SM	≥ 10 ¹⁴ W/cm² (peak)



MM: multi-mode (spatial)

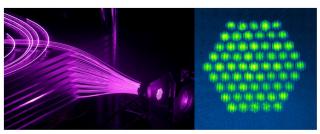
SM: single mode

Under the collaboration with Dr. Donna Strickland on going





hollow fiber laser


Multimode pump input

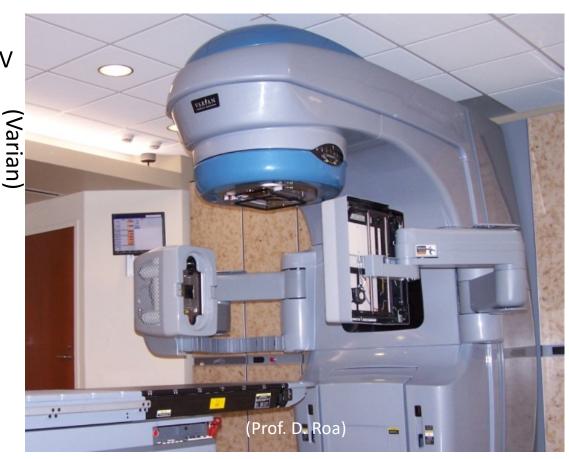
Conventional electron accelerator (and X-ray)

for Therapy

← 5-10m

(next room) \rightarrow

Electron energies by accelerator: 6-20MeV


→ X-rays

LWFA could provide high dose <u>"FLASH"</u> therapy

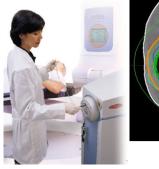
Furthermore, much tinier with fiber

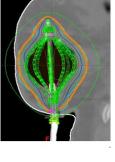
 $L_e \sim 1 \text{ cm} / 10 \text{MeV} \rightarrow 10 \text{ micron} / 10 \text{keV}$

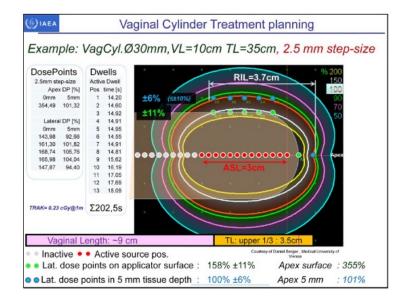
Body penetration Cancer cell size

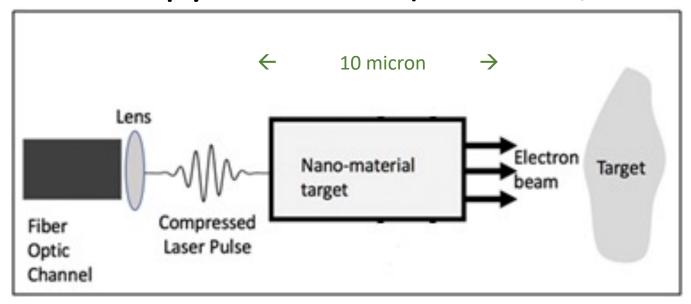
Current radiotherapy applications (from skin, vagina, uterine, breast,

etc.)









Much smaller, endoscopic in ours

(Prof. D. Roa)

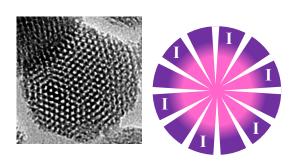
In situ / endoscopic fiber delivery of electron radiotherapy of cancer (Roa et al, 2022)

Fiber laser drives in situ nanotube target in front of cancer cells

→ Compactification, accurate (no collateral damage), and cheap

Cost estimate comparison with Brachy therapies

	<u>LWFA – HDR</u>	Iridium-192–HDR	Cobalt-60-HDR
Purchase Estimate	\$100K - \$300K	\$700K - \$900K	\$700K - \$900K
Room Shielding	None	\$200K - \$500K	\$200K - \$500K
Source Replacement	None	~\$10K every 4-6 months	~130K every 60 months
Downtime due to Source Replacement	None	1-2 days	1-2 days


(Prof. D. Roa, preliminary estimate)


Vector nanomedicine with high-Z metal to target cancer cells for electron radiotherapy

High-Z attached to the vector: stop **electrons**

Nanoparticle **vector**:

delivered to cancer cell

Nanomolecular vector medicine (after Prof. F. Tamanoi, 2022)

Summary

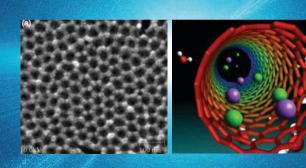
- 1. Near <u>critical density</u> (e.g. nanotube material) → low phase velocity LWFA
- 2. Low energy electrons (> 10keV, < MeV), large amount with <u>fiber laser</u> power (using Raman forward process)
- 3. Fiber laser technology (s.a. hollow fiber laser)
- 4. Endoscopic (through fiber) delivery of electrons for radiotherapy

 ← replacing Brachy therapy
- 5. Nanomolecule <u>vector</u> (with high-Z particle attached) \rightarrow further accuracy, focus of electrons on cancer cells

Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the "Workshop on Beam Acceleration in Crystals and Nanostructures" (Fermilab, June 24–25, 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments.

Thank you very much!

Shiltsev • Tajima


BEAM ACCELERATION IN CRYSTALS AND NANOSTRUCTURES

Edited by

Swapan Chattopadhyay • Gérard Mourou Vladimir D. Shiltsev • Toshiki Tajima

BEAM ACCELERATION IN CRYSTALS AND NANOSTRUCTURES

Book published (2020)

World Scientific