NOTE:

Let Us Become Familiar with the UT/iF$ Simulation Codes =— I

T. Tajima

One of the tedious parts of learning for the beginning user of
simulation 1s to familiarize oneself with the detailed listing of the
code, in light of simulation theory, perhaps, in particular that of

normalization. This note intends to close that gap.
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The basic princliples of particle simulation codes ;re well
documented and oft-discussed subjects. It may be assumed that these are
already "theoretically well understood:" for example,
finite=differencing, the leap-frog scheme, finite-sized particles,
FFT’'s, dipole approximations, the Courant-Friedrichs-Lewy condition, the
alliases, and so on, It 1is, however, still quite natural for the
beginning student in the field to feel at a loss as to how to begin
after all those theories. Although it may take a kinesioiogy Ph.D. to
figure out the theory of running, while a three year-old chiLd can run,
it has still taken that chiid three years to learn how to run in
practice. It is this kind of gap which I wish to bridge. What smart
simulators can do in two months took this author two years to learn, so
do not be discouraged by seemingly tedious, meaningless arrays of names.
This note may still contain errors or derivations which can be improved.

Please let me know of any corrections which will improve it.

1. Equation of Motion

The equation of motion due to electrostatic field is
— e W iE R (1)
m

where J specifies the j-th particle (electron), e 1s the electron
charge (which 18 wusually, and here taken as, positive), and m the

electron mass. With finite particle size,

dv L
?:i = %fo E(r)S(r-rj)dr , (2)
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where L is the system length (L = NCA) and S(r) 4is the form (shape)
factor of particle charge. Ideally, we wish to take the system length
as infinite, but we are satisfied with finite L with N, large enough
for the periodic boundary condition. On the other hand, we define the
form factor as normalized in an infinite system. In case of Gaussian
choice of the form factor, this introduces a small amount of error,

because the Gaussian is not really perlodic at large r
2
S(r) = -.-I-—exp(-zl-%) R
a
S(k) = l-exp(--— kzaz) . (3)

As far as a < L , the error due to this should be exponentially small.
Since our system is finite and periodic, we use a discretized

Fourier transform as follows:

. Nc
' 1
G(k) = T gZ1 G(rg) exp(-ikrg)
Ne
6( rg) = J G(k) exp ikrg) (4)
m=1

where rg = gd , k = 2rm/L , and NA&A =1L, Every quantity with

dimensions 1s normalized in terms of w;l for the temporal

dimensionality and A for the spatial dimensionality. In the following

we explicitly show these normalizations.




Equation (2) becomes:

de

L
= ez [.‘ E(r)f(r - rj)dr 9 (5)

dt mmpA

where v, = vi/w A and E = tw_ . From here on, quantities with a tilda
h| 37p

P
are normalized. Here, the plasma frequency 18 defined as
mg = 4wn0e2/m , using the real particle quantities as usual. It can be

defined in terms of normalized simulation quantities as well.

Equation (5) becomes:

dv L
tj = & j( Y E(k*) exp(ik”er) § S(k") exp[ik"(r - tj)]dr
0 4

dt m 24 K K"

‘ L
= e Z Z E(k”)S(k") exp(-ik"°rj)./; exp[i(k’ + k")r]dr

mls kK
1 L
= == 1 1 E&)HSK" exp(-ik"-rj) LY = exp[ 1{k* + k")r]dr
mng k* k" L Jo

.
= X Z E(k”)S(k™) exp(-ik"*t )L~6 R TN
ml & P

vhere ka._kn is Kronecker’s delta. We now have




dv
A el Y E(k*)S(=k") exp(ik"rj)
dt anA K
P
- el 3 E(k‘)s(k‘)exp(ik‘#rj) ,
mwA k7
P
since S(r) is real and symmetric. Explicitly using Eq. (3), this is
cast into
dv
I - 8 Y E(k) exp(- l-kzaz) exp(ik'rj]
dt mA k 2
p
= Frr! ez E(k) exp(-%kzaz)
upr '
= FFT™1[F(k)] (6)
where "~
F(k) = £ E(k) exp(- %-kzaz) . (7N
xm)zA




2. Poisson’s Equation

Poisson’s equation is

VoE = d4men = 4mp (8)

To count charge in the computer, we have to assign a certain amount of
charge to a sheet of particle 1in the simulation. This is done by
assigning a macro (or super) charge (as well as a wmacro mass) to a

single simulational particle (sheet):

enOL
pp = N 'y
mnoL
mp = N ’ 9)

where ny 1is the real particle density and N 1is the total number of

simulational macro particles. Now the charge density 1s given by

p(rj) = Py f G(r)s(r - rj)dr R (10)

where G(r) 1s the number of macroscopic simulational particles 1in a

cell. Equation (8) becomes:

ikeE(k) = 4ﬂppG(k)S(k) o (11)

Explicitly,

Pok) . (12)




e

Combining Eqs. (12) and (7), we obtain,

2.2
F(k) = % SXp ;t" ) G(k) . (13)

This equation is what is employed in the code as
EX(I2) = =GlX(Il)*GKX(I)
{EX(Il) =  GlX(I2)*GKX(I) (14)
where
{GIX(II) = Re[G(k)]

G1X(I2) = Im[G(k)] - (15)

GKX(I) = FGK*EXK/WAK (16)

with identification of

s b exp(-kzaz)
N

GKRX(1) m

3. Energy Conservation and Scaling of Potential Energy vs. Kinetic

Energx

Any decent code should satisfy at least approximate energy
conservation 1if the simulated physical system i1s closed. In ﬁarticular,

the electrostatic code should satisfy
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v .
L g(r)?
m 2 dr = K = constant, . (17)
V)T o o
j=1
where 74 = total number of (micro) particles = ngL . The second term

18 the total electrostatic energy in the system of length L in unit

area. This term is expressed as

L 2 L .
/ B0 4y = 7§ /dr exp[ 1(k* + k")r] E(k”)E(k")
0 8' k‘ k" 0
)

= L z Gk‘ -k" E(k‘ )E(k")
kK* k" ’

= L) EK)IZ . » (18)
k

Now recall that in the simulation the code is alotted a macroscopic

mass m, instead of the original mass m alotted to a simulated

particle:
‘ 2 Y 2
ng REEN J‘Z'I LA (%

Therefore, the energy conservation relation, Eq. (17), is cast into
N Ne
_1. X mv2+—l-z ElZ(L a K (20)
2\ P h =
] {1k}




Rewriting Eq. (20), we obtain

N N
L SR % SIS S o
1/2mpm§A2 =1 lmmpngz ()
N . 2 No -
= E v§ + L 55 (lmnoe)z Z Elch
I=1 41!mppr {k}
N Ne -
- zlvgmzzg , (21)
i= {x}
where we used Eq. (9) and
= 1

Equation (21) is just the relation used to calculate the total energy in
the code. When the fast Fourier transform routine called FFT2 (instead
of\ghe more conventional FFT) is used, there is a factor 2 in the field
calculation, because the FFT2 folds the k space. The kinetic energy
is c;iculated for N macroscopic simulational particles in the
normalized unit: z ;% ¢« On the other hand, to calculate the total

i=1
potential energy, the code uses F(k) . That is,

Ek = F(k) exp(% kzaz) . ' (23)

Therefore, to calculate, the code does
N

Ne - ‘e 2
N] Ef = Izlem*wx(I)n , C(24)
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where

AR(I) = N¥exp(k2a?)

IEX(I)12 = (|F(k)1% .

In the actual simulation experiments, the value K/(l/ZmpmgAz)
conserves within ~0,1 per cent. See Table 1.

In addition, theory for thermal equilibrium plas@a tells that the
total potential energy should be the plasma parameter times the total
kinetic energy.1 This means that the second term in Eq. (21) is
smaller than the first term by a factor of “OAD o« The first term of
Eq. (21) is |

I v3 o= wi (25)
j=1

while the second term is roughly

N, Ng
L- § > 2 — ] mvh
s ] B> e X
4ﬂm%ng2 k mpngz /o P
2,2 N
. mppr Xﬁ ;&
57 A VT
Mp%p
: XNevE (26)

where the relation <E§L/8:> - mgv%x/Z , with x = [1 + kZX% exp(kzaz)]'1
is used. This last relation 18 examined in the next, section. Thus, we
find the plasma parameter in the simulation system 1s related to kinetic

and potential energlies as
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P.E. N

< 5 - (27)

The actual simulational results are listed also in Table 1.

4, Energy Partition

In thermal equilibrium, a plasma sustains fluctuations‘ of wvarious
modes of (electrostatic) oscillations. An individual mode _Ek can be
regarded as a system (a canonical ensemble system) in contact with a
thermal bath of many modes with wavenumber other than k {Ek"
k* # k} . The contact of E, with thermal bath {E,.-, k” # k} 1is
through the nonlinear mode-mode interaction. According to statistical
physics, the probability of taking a certain energy level in canonical

ensemble is proportional to the Boltzman factor:

. -(E
P(E )dE, « exp[ £Tk):l dE,. (28)

(see Ref. 2) where w(Ek) is the energy required to create

fluctuations Ek :

v(E) = % EZL[1 + k23 exp(k?a?)] . (29)

Since the probability function P(Ek) should be normalized

to 1 (d.e., L: P(Ek)dEk = 1) , the normalization of Eq. (28) is
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P(E) = :
{
1 L 2,2 .2.2y7 1 1/2 BgL 2,2 2.2
75 | TxT [l + k XDexp(k a )] expy - o exp[l + kp exp(k a )] o
(30)
With Eq. (30), we immediately have
2
<E‘£ = L. kT 31
8w 2 4 kZX% exp(kzaz) '

We can derive Eq. (31) through another way. According to the
fluctuation and dissipation theorem3'4, the spectral intensity1 of the

fluctuations in thermal equilibrium is given as ' (

2
N k 1
) S{ }(k,m) S T A2 Im D (k,w) (32)
D {g}

where subscripts p and f refer to point and finite-size cases,

respectively. Using Krammers-Krdnig’s relation4'5'6'7, we obtain

k2 du 1
S (k) 2 - . — Im
2
k 1
= ;5 1 - Re D (k,O (33)
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From the expression of Dp(k,O) = ] + k%/kz , we obtain

K2

S (k) [ S
P k2 + k2

On the other hand,

@« & ol

Therefore,

2
<plzt>{ = %T I-D_—(-IKQ—)'

B g}

and at the same time

62> - X G .

16m2

Thus,
2
Cp 1, 1
8r 2 4 k22 !
and
2
CEiLs < Lo 1
8n 2 ¢
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Thus, we reproduced Eq. (31) through the fluctuation dissipation

theoren.

Now let us think about the case for the simulation. Can we expect

2
1 <EkL> . 1
1/2¢T 8n 1 + kZA% exp(kzaz)

in the simulation? If we can, what does kT in the simulation mean? Is

{e kT = ﬁv% or KT = mpv% ?

If we think the statisticél-physics basis of Eq. (31) , what
matters is the freedom of kinetic motion. In the simulation the free
random motion 1s not assigned to a particle energy 1/2v§ , but to a

macroscopic particle’s energy 1/2mpv§ . Theréfore, we should interpret

KT = mpvg « In the simulation

<E§‘L>/eu L/Sw(umgA /e) 2 CF(k)2) exp(k2a?)

mpv%[% l/ZmPV%

< lwnped )2
- L _(__._o___)f_ <F(k)2> exp( kzaz)
8 1/ompiatvi

N -,_1—2 <F(k)2> exp( kzaz) , (34)
vr

where we used Eq. (7). According to the present argument,
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2 .
312 1+ kA2 exp(kZa?)
L p expl ka
Therefore,
v} 1
<F(k)2> exp(kzaz) = 5 o _ (36)

1+ kzkg exp(kzaz)

In the actual computational runs, we made F(k,t) the correlation
function, 1i.e., F(k)2 and multiplied by exp(kzaz) « We plot the
simulational values of N;'%[F(k)z]exp(kzaz) in Fig. 1. The theoretical
prediction, i.e., the right-hand side of Eq. (35), is superimposed on
the experimental curve. The fit 18 excellent in the higher k region.
In the 1lower k region, there is some deviation from perfect thermal
equilibrium; presumably this is because the long wavelength mode is less
suscep{@ble to damping or decay and, therefore, does not reach thermal
equilibrium as quickly as the short wavelength modes. Note that the
correlation 1s taken over only a finite span of time in the actual

simulation, in contrast to theory.

5., Summary of Normalization

We summarize the normalization of the codes.

NCXxNCY _ fgrids
NO #particles

(1) Time~! : Wee * 1,1f FGK
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as 18 customarily done.

(11) Length :

v
th
A + 1’ ADe = o N
Wpe
TQerefore,
v = code velocities = v
owpe
(111) Acceleration :
dv = e a -' [ ] =B e -l
Tt- ;E ’ v VAmpe » £ tmpe °
Then,
dv  dupe dv , .2
o E- § w
at 4=l dt Pe
pe
. A A
t
mAmpe

More generally, dv/dt = E+ v/c x B . Normalization of E,B
same in electromagnetic codes. Thus,
2 2
~ miw - ~ mAW
E = E —P° o E(4wness) , B = B P |
e e
and
= . ¢
€ Avw *

pe

is

the
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(iv) Cyclotron frequencies :

2 -
(] = EE = -e_imwpe = -B.o w
ce mc m  elw c pe
pe
~ Wee B
Wee = o ‘(':' °
pe
(v) 1Ion cyclotron :
eB my eB mi
et "5 " @ w7 HT e
1/2 1/2
w (lmneZ\’/ - (E)/ . (lmnez) . m)l
pi m M m M
(vi) Plasma B :
2 Y 2
2 2 - 2
. 8n B</8n 2
. B¢/ / [B(mAwpe/e)]
22 Broma%w? e? <2
o o ¥2, TRt w2
TR 2
Alternate :
2 2
g = Ve 8mnm ( ezgznm ) (23)2 - 2 Wpe
2 52702 o2e282jc2n2) \ e o2
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(vii) Gyroradius :

v d - w
pg = —— = VApe . ve .,y
ce (B/c)wpe B
p; = (“)1/2 v
i P o
m mce

g “(a/M )-w-::— T,

vy VT /T, Yu/M (ri )1/2(M)1/
pi [ =

(ix) Skin depth :

L = E._A_‘.iu_PE = cof R
(Upe mpe

(x) If the parameter FGK (we write this through g as below) is taken

other than NCXxNCY/NO , the normalization changes accordingly. However,

diffefent FGK choices are not recommended for beginning. Let

~

FGK = gx(NCXxNCY) _
NO

Then this will scale the individual simulation charge as

That is, all the

current and change-related numbers are scaled

accordingly.. This includes fields é,i and frequencies,
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6. The Fourier Transform and the FFT2 Algorithm

In the code quantities are defined on discrete points and the Fourier
transform needs according care. The quantity f = f(r,s) that is only defined
at the discrete points (r,s) and perioric in the directions of r and s can

be transformed by the discrete Fourier transform defined by

Nx-l,N -1
;o= L > _ 2midr _ 2Mins
fim = NN frs exp( N SP\T N
Xy r,s5=0 x y
N -l;N _1
X y
frs - Z £m exp Nx Xp Ny
£, m=0

The Fourier coefficients flm span complete space. If £ s is real, then one

can show from the complex conjugency that:

N -1,N -1
e i2
= _ 1 E £ exl- ﬂ(Nx-l)r exo |- 2mims
fN-t,m = NN rs SXF N_ P N,
X xYy r,s=0
N.-1;N -1
x y .
: 1 . anipr) 2mi (N _-m)S {_ -
= )NN E rs ®XP| 7y XF N 24,8 -m
X r,s=0 X y y
and similarly,
N -1,N -1
y 120(N -Dr 211 (N -m)S
t p— - f exp-———i——-—- exp|- —
N -¢,N -m N N TS N N
y Y 1.8=0 x y
N -1, N -1
1 2nifr 2mims I
={F N E fa © ( )e’q’(n ) = o
Xy y
r,s=0

Thus, we see that we need to know only half of the terms f!m in order to

reconstruct frS if frs is real, since the other half are related by a complex

conjugation.
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The algorithm FFT2 takes advantage of this result in calculating

the discrete transform of a real array. In this algorithm, the index of

f of ;lm runs from zero to Nx/Z-l. The components of Flm with a higher

value of § are reconstructed by complex conjugation, except for = Nx/2'
For {4 = Nx/2, we find that

~ ~k

= f

(1) £ =
Nx/2,m Nx/Z,Ny m
express the terms with index 1 <m < Ny/Z - 1 as complex conjugates

, so that except for m=0, Ny/2 , we'can

of terms with Ny/2+1<m<Ny—l .

~r

Similarly, for £=0, we find that (2) fO,m = fO,Ny—m , so that we
can express terms with index Ny/2 +1 <m < Ny - 1 in terms of the complex
conjugate of terms with 1 <m <Ny/2 - 1. Thus, we can suppress terms of
T with index £=N /2 , if we eliminate those terms of '3 with
£,m X O,m
Ny/Z <m < Ny - 1 (which can be reconstructed) in favor of terms of
f
Nx/2,m

with N /2 <m<N_~- 1.
y y
\tI'he only terms remaining are those fo/Z,O and fo/Z,Ny/Z . However,

each of these terms have vanishing imaginary parts, and so do the terms

f0,0 ° fO,Nx/Z .

place of Im f0,0 and Im fO,Ny/Z , which had vanished.

Thus, we can place Re fo/Z,O and Re fo/Z,Ny/Z in

Table 2 summarizes which indices are kept and which are left out. Note
that everything with £ 2 Nx/Z + 1 can be suppressed, since it can be
expressed as a conjugate of some term with £ < Nx/2 - 1. The only
terms which then have to be shuffled are those with £=0, and

l-Nx/Z. Table 3 shows the FFT2 components.
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(1) ¢ £
Nx/Z,Ny/Z Nx/Z,Ny/Z
2 f*
(2) fO,N /2 0,N /2
y y
b3 = f* f
2,0 - fn-2,0 0.0 fy N
y Xy
f f* = f*
Ny/2,o Ny/z,o 0,0
One can also show this result as a summation:
N -1 -1
y X
£ - 'E e 2nims e 2rifr
rs tm PN *PIx
y X
m=0 £=0
N -1
y
=z:~ ~ (l)re 2rims
0 N /2,m *PI7N
m=0 y
-1 N /2-1 N -1
X

B el o) - K
Z Z X Ny = x/2+l

X exp (21;111')
X

which can be written:
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Ao

y X X y
N /2-1
< ~k 2wl
~ r wims
+ E [me + (-1) fN /2N —m] exp( N )
X y y
m=1
N -1
7 2
r~ wims
* Z [ fon -m ¥ OV £y p2 exp( N )
/2 ¢ ¢
=N /2-1
o y
N =1_N -1
y X
+ ~ 2rifr 27 ims
z : z : {m N N
- X y o
m=0 L f=]
N -1
X
~k 2milr 27ims
*Z fN-l,N-me(N ) (N)
I=Nx/2+l X y x y

This expression shows explicitlywhich terms need to be known. Suppose

we wish to calculate

(N /2-1) (N /2-1)

1=-(Nx/2-l) m=-(Ny/2-l)

f(x,y)

where the indices are related by

(4
¢m

~

£ y-m

~
_ and =

l’-m 4,0

This is an approximation to the infinite Fourler series:

+4o0
f(x,y) = z : glm exp (1k,x) exp(ikmy)

m’zsdm
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for the case where f(x,y) 1is a real function. We can write the sum

over positive indices:
N /2-1 N /2-1
v

£(x,y) = Ego+ E £, exp ik y) + £y _y e¥P(-1k y)
m=1 m=1
N /2-1 N /2-1
X X
+ E flO ex'p(iklx,) + E f_loexp(-—iklx)
£=1 L=

N /2-1 N /2-1

Y b4
+ E E f[m exﬁ(iklx) exp(ikmy) + fL,-m exp (1k, x) exp(—ikmy)
m=1 £=1

+ ; exb(-iklx) exp(ikmy) + £

_l’m exP("ika) Exp(-ikmy) .

lg-m

Then we can use the relations among indices to write:

N /2-1 N /2-1
y v
[ "~ ~*
f(x,y) = fOO + E fOm exp(ikmy) + E fOm exp(-ikmy)
. m=1 m=1
Ny/Z—l Ny/2-1
~ ~ %
+ E fﬂO exp(ikﬁx) + E f20 exp(—iklx)
l:l £=l
N /2-1 N /2-1
y/ y/
+ E {flm exp(ikzx) exp(ikmy)
m=1 1=1
+f T
g,-m exp(iklx) exp(-ikmy) + fz,—m exp(—ikzx) exp(ikmy)

~k
+ flm exp(-ik!x) exp(-ikmy) }

Now let us make the substitution m' = Ny -m, 4§ = Nx -f , then:
exp(-ikmy) = exp(-2miy) exp(ikm,y)
and

exp(-iklx) = exp(-2mix) exp(ikl.x)
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So, if we limit ourselves to evaluating f(x,y) at integer values of

x and y , we can write:

- N _/2-1
Ny/z 1 y/2
] ~ R '\*
£(x,y) = f£455 + E fom e¥P(ik y) + z fO,N —m &¥P 1k y)
m=1 m=Ny/2+l y
- ' 1 (N /2-1
N, /2-1 . N /2-1 Ny/2-1 y/
~ ~fe ) ~ .
+ E f£0 exp(iklx) + E fo—l,O exp(lkzx) + E E fgm exp(lkzx)
=1 l=Ny/2+l i=1 mwe=l

Ny-l I
X exp(ikmy) + E fﬁ,-(N —m) e}‘cp(ikix) exp(ikmy)
weN_/2+1 y f

N -1 N /2-1
* y

~%
E fN -0,-m exp(ikix) exp(ikmy)
£=N /2+41( ‘m=1 X

+

N -1
Y,
+ ‘»E &=
. fN -0,N ~m exp(ikax) exp(ikmy)
m=Ny/2+l x Uy

-

We can see' that this expression is not the same as that given by FFT2.

For one thing, this expression involves knowledge of coefficients ?ﬂm
with negative subscripts, whereas FFT2 does not handle such terms.
Secondly, FFT2 involves knowledge of the coefficients ?Im , Wwith m 1in
the range Ny/2 +1<m< Ny - 1, which are not in our expression for
f(x,y). However, we can calculate f(x,y) by using FFT2, if we define
the coefficients with Ny/Z +1<nm< Ny = 1 to be the coefficients

with —(Ny/2 -1)<m<-1:
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N "N
¥ = 7 2L - < X _
£, ft,m—Ny , 2+1<m<Ny 1, 1< <2 ]
~ ~ EX Nx
fl,N_m=f!’_m 1<m<2-l, ;<l<—2—-1 .
y
Then we obtain:
N /2-1 N -1
y
£(x,y) = f.. + ?e(ik)+§ £ " exp(ik y)
(x,y 00 om SXPLTELY 0,N -m S¥PLIE)Y
m=1 m=Ny/2+1 y
N -1 N /2-1 ' N -1
v v y X
~ ~k
+ E E fﬂm exp(iklx) exp(ikmy) + E fN “J.N -m exp(iklx) exp(ikmy)
m=0 £=1 1=Ny/2+1 x 0y

where the prime indicates that m = Ny/2 is omitted. Thus, £(x,y) 1is
given by FFT2 if we set equal to zero all coefficients with subscripts

I-Nx/Z or m=Ny/2 » and (x,y) are integers.
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FIGURE 1




