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In the scrape-off-layer (SOL) of a field-reversed configuration (FRC), neutral beam injection can drive modes
in the vicinity of the ion-cyclotron frequency. Depending on their properties, these modes can have differing
macroscopic effects on the plasma. This work examines the linear properties of the various categories of
ion-cyclotron modes that can be excited in the SOL environment, taking an ion beta of 10%. Propagation
angle and beam injection angle are scanned from 0◦ to 90◦ with respect to the external magnetic field. The
nonlinear physics of these modes, particularly ion acceleration with consequences for plasma stability and
fusion reactivity, as are also examined. Primarily the work considers a deuterium plasma and hydrogen
beam, but the case of a boron-11 plasma and hydrogen beam is also briefly considered.

I. INTRODUCTION

In a field-reversed magnetic configuration (FRC), a
compact toroid of (reversed) closed field lines is embed-
ded in a magnetic mirror1. In addition to providing a
relative technological simplicity, this arrangement pro-
duces several distinct beneficial plasma properties, such
high plasma beta and large particle orbits. One strat-
egy of augmenting this base conception of an FRC is the
injection of neutral beams nearly perpendicularly to the
axial magnetic field, as in the C-2U machine2. In this
case, the beam ion pressure is equal to or greater than
the thermal plasma pressure, and the fast beam ions pos-
sess machine-sized orbits. This intense fast-ion pressure
forms an internal spine that stabilizes the FRC against
macro-instabilities. Such a scheme was the vision of Nor-
man Rostoker3.

While the beam stabilizes harmful macro-scale modes,
it can also drive microscopic modes, warranting an exam-
ination of beam-plasma interaction with regard to micro-
instabilities. An interesting class of these modes which
may be preferred are those with frequencies in the vicin-
ity of the ion-cyclotron (IC) frequency or its harmonics.
In the high-beta FRC core, the preferred of such modes is
the Alfvén-ion cyclotron (AIC) mode4, but in the lower-
beta scrape-off-layer (SOL), electrostatic modes such as
ion-Bernstein modes5,6 or other IC modes7 may be ex-
cited. The SOL is a thick region of open field lines out-
side the FRC core that nonetheless contains considerable
plasma and beam pressure. Three chief factors establish
the SOL as the more pressing to examine in this work.
First, the closed field lines in the core mean that wave-
induced disruptions of these kinds are essentially benign.
Second, the beam-plasma interaction is likely strongest in
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the SOL due to the distribution of beam orbits. Third,
and perhaps more importantly, the electrostatic modes
that can be driven in the SOL can potentially generate
a large tail of fast background ions, which has important
bearing for fusion enhancement8, as is elaborated below.
A more in-depth analysis of the nonlinear physics of this
ion acceleration can be found elsewhere9. For this work,
we thus confine our attention to the SOL, and our goal
is to examine the various IC modes that can exist in this
environment.

Ion-cyclotron waves can be broadly divided into two
categories: electrostatic and electromagnetic. While
the former tend to propagate perpendicularly to the
magnetic field, the latter are more strongly associated
with propagation parallel to the magnetic field. A
large quantity of work on electrostatic IC modes has fo-
cused on instabilities from a fast beam population, both
in the case of particles streaming along the magnetic
field5,6,10–13 and particles with a substantial perpendic-
ular component14–16. In particular, the emission of IC
waves driven by fast fusion ions via the magnetoacous-
tic instability has been studied extensively17–20. In this
same context, IC heating has been pursued as a means
of heating beam ions21. Observations of accelerated ion
populations in the magnetosphere and ionosphere22–24
has also motivated study of electrostatic modes. Elec-
tromagnetic IC modes have similarly been studied in the
contexts of space25–29 and fusion4,30,31 physics. In this
study, we marshal this large body of knowledge to build
an understanding of the beam-driven IC physics possible
in the SOL environment of an FRC. To our knowledge,
this has not been coherently done before.

To this end, we employ 1D particle-in-cell simulations
to scan the full angular span of beam injection and mode
propagation, dividing this scan into qualitative regimes
for comprehension of the linear physics32,33. For each
regime, the nonlinear acceleration of background ions is
also briefly examined. In particular, a distinction is made
between modes that increase the bulk ion temperature
and those that merely generate a tail of fast ions, the for-
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mer being generally conducive to anomalous transport,
macro-instabilities, and turbulence, and the latter being
relatively benign.

This difference derives from the typical phase veloci-
ties of the waves excited. In cases where the wave phase
velocity lies within the ion thermal distribution, the wave
couples to the bulk motion of the ions, potentially caus-
ing disruptions of the plasma. The saturation of the
wave follows familiar quasilinear theory34,35. In con-
trast, if the phase velocity is much larger than the ion
thermal speed, the saturation mechanism becomes that
of wakefield physics36, and the wave trapping velocity37
approaches the wave phase velocity. The wave then ex-
ists in a robust state and accelerates a tail of ions to
very high energy without inciting plasma disruptions.
Such modes can be highly beneficial for a fusion plasma,
dramatically increasing the fusion rate while preserv-
ing confinement8. The possible of seeding such modes
through density bunching of the beam is also explored
by considering a beam population initialized with den-
sity modulations to resonantly excite the desired mode.

The organization of the paper is as follows. Section
II presents the broad kinetic analytical theory of beam-
driven waves in plasmas. Section III establishes the de-
tails of the simulation scheme and plasma parameters
used in this work. Section IV then explores the regime
of IC waves propagating parallel to the magnetic field,
and section V treats oblique propagation. Section VI
then completes the angular parameter scan by examining
perpendicular propagation and the interesting nonlinear
physics that results. Section VII considers the effective-
ness of seeding a desired mode to increase the efficiency of
its excitation and acceleration of background ions. Sec-
tion VIII then briefly extends the preceding results to
that with a proton-boron-11 plasma. Finally, section IX
makes concluding remarks.

II. ANALYTICAL MODELING OF IC MODES

The foundation of this work is the modeling of kinetic
ion-cyclotron waves in an experimentally relevant geom-
etry and parameter regime. To this end, we make use of
the essentially 1D geometry of the SOL of the C-2U FRC
and consider a homogeneous plasma in a uniform mag-
netic field. This situation can be described in analytical
theory, from which the major properties can be extracted.
The kinetic beam effects are of particular concern, and so
in general it will be necessary to treat an arbitrary beam
injection and wave propagation angle. Additionally, to
obtain a relatively realistic picture of the robustness of
excitations in various regimes of these angular param-
eters, the beam is given a thermal spread in addition
to its drift component. Including this complication pro-
duces substantially more experimentally relevant mode
structure. This concern requires a substantial analytical
effort and is a somewhat novel feature of this study. We
thus set now to tackling the analytical formalism under-

lying this work.
The analytical theory of linear plasma waves begins

with the relation ~D = ε · ~E32,33, where ~D is the dis-
placement electric field in a medium (plasma), and ε is
the dielectric tensor. (It is assumed that the medium
has a linear response to the electric field ~E in the limit
of low-amplitude waves.) Arrow accents denote vectors,
and bold font denotes matrices. By expressing Maxwell’s
equations in terms of complex Fourier amplitudes, it can
be shown that ε determines the allowable waves in a
plasma. For a wave with wavevector ~k and frequency
ω, the general plasma dispersion relation is given by

det |∆(~k, ω)| = 0, (1)

where

∆(~k, ω) = ε(~k, ω)−
(
ω/k

c

)2
(
I −

~k~k

k2

)
. (2)

The electric field polarization is given by solving for the
eigenvectors of ∆ · ~E = 0 once ~k and ω are determined
by Eq. 1. The magnetic field polarization is then given
by ~B = (c/ω)(~k × ~E).

The dielectric tensor ε is thus chief object of in-
terest for determining the allowed ~k and ω. While
a simpler, scalar function containing only information
about electrostatic (longitudinal) waves can be found by
ε(~k, ω) = [~k · ε(~k, ω) · ~k]/k2, the relatively high ion beta
considered here (β = 0.1) necessitates the inclusion of
the full tensor, which contains the full wave information,
including both electrostatic and electromagnetic waves or
hybridized combinations thereof. The full tensor can be
conveniently divided among the contributions from each
plasma species σ according to

ε(~k, ω) = I −
∑
σ

εσ, (3)

where

εσ(~k, ω) =
(ωσ
ω

)2
[
I +

∞∑
n=−∞

∫ (
nΩσ
v⊥

∂fσ
∂v⊥

+ k‖
∂fσ
∂v‖

)

×
Πσ(v⊥, v‖;n)

nΩσ + k‖v‖ − ω − iη
d3v

]
(4)

for a homogeneous plasma in a uniform magnetic field
~B0 ‖ ẑ with wavevector ~k = k⊥x̂+ k‖ẑ. The angle
0◦ ≤ θk ≤ 90◦ denotes the direction of ~k with respect
to ~B0, with which k⊥ = k sin θk and k‖ = k cos θk. Note
that this coordinate frame is different from that used
in the simulation scheme, as is described section III.
The characteristic frequencies for each species are the
species plasma frequency ωσ =

√
4πnσq2

σ/mσ and cy-
clotron frequency Ωσ = qσB0/mσc, where qσ, mσ, and
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nσ are respectively the charge, mass, and number den-
sity of a species. The total plasma frequency is given by
ω2
p =

∑
σ ω

2
σ ≈ ω2

e . The tensor Πσ is given by

Πσ =


(
nΩσ
k⊥

)2

J2
n iv⊥

nΩσ
k⊥

JnJ
′
n v‖

nΩσ
k⊥

J2
n

−iv⊥ nΩσ
k⊥

JnJ
′
n v2

⊥(J ′n)2 −iv‖v⊥JnJ ′n
v‖

nΩσ
k⊥

J2
n iv‖v⊥JnJ

′
n v2

‖J
2
n

 ,
(5)

where Jn ≡ Jn(z), z ≡ k⊥v⊥/Ωσ, and J ′n ≡ dJn(z)/dz.
The quantity η represents a small, adiabatic turning-on of
a field perturbation. The integral is done over all velocity
space, with in general d3v = 2πv⊥ dv⊥ dv‖.

The species velocity distribution function is given de-
noted by fσ, and we must now provide a notation to
differentiate species. Let the subscripts i, e, and b re-
spectively indicate background ions, electrons, and beam
ions. References henceforth to simply “ions” refer to
the background ions. The ions and electrons are given
Maxwellian distributions with isotropic temperature. For
σ ∈ {i, e},

fσ(v⊥, v‖) =
v⊥

(2π)3/2v3
tσ

exp

(
−
v2
⊥ + v2

‖

2v2
tσ

)
, (6)

where vtσ =
√
Tσ/mσ is the characteristic thermal speed

for a species σ with temperature Tσ. This distribution
obeys the normalization

∫
fσ(v⊥, v‖) d

3v = 1. Substitut-
ing the ion and electron expressions for fσ into Eq. 4 and
carrying out the integration over velocity space yields (for
σ ∈ {i, e})

εσ(~k, ω) =−
(ωσ
ω

)2
[
z2
σ0ẑẑ

+

∞∑
n=−∞

zσ0Z(zσn)π(βσ, zσn;n)

]
,

(7)

where

zσn ≡
ω − nΩσ
|k‖|vtσ

, (8)

and βσ ≡ (k⊥vtσ/Ωσ)2 = (k⊥ρσ)2 (where for σ ∈ {i, e},
the Larmor radius is defined as ρσ = vtσ/Ωσ). The mod-
ified tensor π can be expressed as

π(βσ, zσn;n) =

 π11 π12 π13

−π21 π22 π23

π13 −π23 π33

 , (9)

where the distinct elements are

π11 =
n2

βσ
Λn(βσ), (10a)

π12 = π12 = inΛ′n(βσ), (10b)

π13 = n
zσn

β
1/2
σ

Λn(βσ), (10c)

π22 =
n2

βσ
Λn(βσ)− 2βσΛ′n(βσ) (10d)

π23 = −izσnβ1/2
σ Λ′n(βσ) (10e)

and

π33 = z2
σnΛn(βσ), (10f)

where Λn(x) = In(x)e−x and In(x) is the modified
Bessel function of index n. The function Z(z) is a mod-
ified version of the plasma dispersion function38 and is
defined as

Z(z) =
1

(2π)1/2

∫ ∞
−∞

e−ζ
2/2

ζ − z − iη
dζ. (11)

This function Z (Eq. 11) can be evaluated as

Z(z) = i

√
π

2
erfcx

(
− iz√

2

)
= i

√
π

2
w

(
z√
2

)
, (12)

where erfcx(z) is the scaled complementary error func-
tion, and w(z) is the Faddeeva function. Other forms
exist as well, but those involving multiple terms can suf-
fer badly from numerical instability for =(z)� <(z).

The beam distribution requires more thoughtful treat-
ment. The beam velocity distribution is a general-
ized Maxwellian with temperature Tb and drift speed
vb =

√
2Eb/mb directed at an angle 0◦ ≤ θb ≤ 90◦ with

respect to the external magnetic field, where Eb is
the beam drift energy. The parallel and perpendicular
drift components are thus given as vb‖ = vb cos θb and
vb⊥ = vb sin θb, respectively. The beam Larmor radius is
defined as ρb = vb⊥/Ωb. The perpendicular drift is uni-
formly sampled from all directions perpendicular to the
external magnetic field, giving the perpendicular distri-
bution function

fb⊥(v⊥) =
1

2πv2
tb

v⊥Λ0

(
vb⊥v⊥
v2
tb

)
exp

[
− (v⊥ − vb⊥)

2

2v2
tb

]
.

(13)
This function obeys the normalization
2π
∫∞

0
fb⊥(v⊥)dv⊥ = 1. Note that in the limit vtb → 0,

this function converges to the more familiar ring distri-
bution fb⊥ → δ(v⊥ − vb⊥). The distribution function for
the beam velocity parallel to the external magnetic field
is simply a drifted Maxwellian:

fb‖(v‖) =
1

(2π)1/2vtb
exp

[
−
(
v‖ − vb‖

)2
2v2
tb

]
, (14)

which obeys the normalization
∫∞
−∞ fb‖(v‖)dv‖ = 1.

While this beam distribution is likely similar to that of
freshly injected beam particles in the C-2U experiment,
the beam overall in experiment has a slowing-down dis-
tribution, which would tend to blunt the growth of the
beam-driven modes examined here.



4

Substituting fb into Eq. 4 does not yield closed-form
solutions as is the case with the ions and electrons. While
the integration over v‖ can still be expressed in terms of
the Z function with argument

zbn ≡
ω − nΩb − k‖vb‖

|k‖|vtb
, (15)

the integration over v⊥ has no closed form. These inte-
grals can be evaluated numerically, but can also be ex-
pressed as sums over Laguerre polynomials. The tensor
εb can be expressed compactly as

εb(~k, ω) = −
(ωb
ω

)2
{
A

+

∞∑
n=−∞

B ◦ [zbnC + (zb0 − zbnC)]Z(zbn)

}
,

(16)

where the ◦ operators denotes an element-wise
(Hadamard) product. The matrices A and B are given
by

A ≡ 1

2

 α2
⊥ 0 −α2

⊥ tan2 θk
0 α2

⊥ 0
−α2
⊥ tan2 θk 0 2(zb0 + α‖)

2 + α2
⊥ tan2 θk


(17a)

and

B ≡ e−α
2
⊥/2


n2

βb
i n

β
1/2
b

n
zbn+α‖

β
1/2
b

−i n

β
1/2
b

1 −i(zbn + α‖)

n
zbn+α‖

β
1/2
b

i(zbn + α‖) (zbn + α‖)
2

 ,
(17b)

where α⊥,‖ ≡ vb⊥,‖/vtb. The matrices C and C contain
the perpendicular integration, are given by

C ≡

Pn Rn Pn
Rn Un Rn
Pn Rn Pn

 (18a)

and

C ≡

Pn Rn PnRn Un Rn
Pn Rn Pn

 . (18b)

The functions that form the elements of these matrices
are distinct perpendicular integrals:

Pn ≡
∫ ∞

0

ξI0 (α⊥ξ) J
2
n

(
β

1/2
b ξ

)
e−ξ

2/2 dξ, (19a)

Pn ≡ Pn

− α⊥
∫ ∞

0

I1(α⊥ξ)J
2
n

(
β

1/2
b ξ

)
e−ξ

2/2 dξ,
(19b)

Rn ≡
∫ ∞

0

ξ2I0 (α⊥ξ) Jn

(
β

1/2
b ξ

)
J ′n

(
β

1/2
b ξ

)
e−ξ

2/2 dξ,

(19c)

Rn ≡ Rn

− α⊥
∫ ∞

0

ξI1(α⊥ξ)Jn

(
β

1/2
b ξ

)
J ′n

(
β

1/2
b ξ

)
e−ξ

2/2 dξ

(19d)

Un ≡
∫ ∞

0

ξ3I0 (α⊥ξ)
[
J ′n

(
β

1/2
b ξ

)]2
e−ξ

2/2 dξ, (19e)

and

Un ≡ Un

− α⊥
∫ ∞

0

ξ2I1(α⊥ξ)
[
J ′n

(
β

1/2
b ξ

)]2
e−ξ

2/2 dξ.
(19f)

In the cases of purely perpendicular or parallel propa-
gation (θk = 90◦ or θk = 0◦), special care must be taken
to re-derive the expressions in Eqs. 7 and 16.

By approximating ε, certain closed analytical forms for
modes can be found. For this ion beta regime (β = 0.1),
electromagnetic modes, which involve the Alvén speed
vA = c

[∑
σ(ωσ/Ωσ)2

]−1/2, are highly prominent. In par-
ticular, the modes most relevant to this work follow
ω = kvA, while one mode follows ω = k‖vA as a variant
to this expression. Perhaps the most important simple
analytical expression is motivated by Eq. 15: the beam
resonance condition, given by

ω = k‖vb‖ ± pΩb, (20)

where p is an integer. Across various regimes
of propagation, this relation will reappear. For
p = ±1, however, the k = 0 intercept of this rela-
tion is more precisely the hybrid ion resonance39 at
ω/Ωi = Ωb(niΩb + nbΩi)/(niΩi + nbΩb) ≈ 1.9. Because
nb � ni here, this distinction is not of great importance
for the mode structure.

More generally, however, Eq. 1 must be solved nu-
merically, particularly for cases where the entire dielecic
tensor is needed to produce the examined modes, such
as will be seen in the case of near-perpendicular propa-
gation. Indeed, while simulations are the primary tool
for this study, numerical solutions to Eq. 1 help to fur-
ther clarify and complement the results from simulations.
Following this logic, numerical (semi-analytical) methods
were used in this work to confirm and better understand
the simulation results.

Equation 1 can be solved numerically for choice of
plasma parameters and the angles θk and θb. To do so, a
2D grid of real (ω) and imaginary (γ) frequencies and a
list of k values for the relevant physics are first defined.
For each k value, each box in the frequency sample grid
is mapped as a contour through the dispersion function,
and the winding number of the resultant mapping indi-
cates whether a solution is present. In most cases, the
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beam density is lowered to 10% of that of the simulation
beam density to ensure that the semi-analytical growth
rate remains in the linear regime, |γ| � |ω|. Generally
the mode structure is not strongly affected by this consid-
eration. The linear dispersion relation, polarization and
growth or damping rate for a wave mode for arbitrary
propagation and beam injection angle can thus be de-
termined. Because this technique can produce many so-
lutions along cyclotron resonance cones, certain of these
solutions may be omitted for clarity.

III. KINETIC SIMULATION OF IC WAVES

Particle-in-cell (PIC) simulations can, in a sense, serve
as an exact solver for the types of linear waves excited
in a plasma and their nonlinear coupling and evolution
over time. Examining the exemplary case of the observed
fusion enhancement in the C-2U experiment, we model
IC waves in the C-2U SOL environment, corresponding
to a radius of about 45 cm. The near-uniform axial mag-
netic field in the SOL readily allows dissection of the
important physics. We demonstrate the main kinetic dy-
namical processes via a PIC simulation with one spatial
dimension and three velocity dimensions using the elec-
tromagnetic particle simulation code LSP40. The SOL
plasma is modeled as a locally homogeneous deuterium
and electron plasma with a proton beam in a uniform
(axial) magnetic field. Each is designated with the sub-
scripts i, e, and b, respectively, and σ designates an ar-
bitrary species. We will also briefly consider the case of
a boron-11 (B11) thermal plasma with hydrogen beam.
The spatial dimension of the simulation is labeled the x̂
direction. The external magnetic field is given a strength
of B0 = 750 G and is directed at an angle 0◦ ≤ θk ≤ 90◦

with respect to the x axis to define the direction of the
wavevector ~k. A schematic representation of the simula-
tion geometry is shown in Fig. 1.

The ions and electrons are given a temperature of
Ti,e = 200 eV, and the beam is given Tb = 500 eV. All
temperatures are isotropic; instabilities deriving from
anisotropic temperature are not considered here (ex-
cept in the sense that a beam population adds velocity
anisotropy). The beam drift energy is Eb = 15 keV. The
plasma component densities nσ are defined relative to
the ion density ni = 7× 1018 m−3. The beam density is
10% of this value: nb = 0.1ni, and the electron density is
determined by these two quantities to preserve quasineu-
trality.

Because the relevant length scale is that of ion cy-
clotron motion (ρi), which for the SOL environment is
taken here to be much larger than the Debye length λD,
an implicit algorithm is adequate41, allowing a grid spac-
ing ∆x� λD. In particular, the size and resolution of
the spatial domain are such that the modes of interest
are well-resolved in k space and the total domain size is
much larger than the relevant mode wavelength to pre-
vent waves deriving solely from the periodic boundary

FIG. 1: A schematic representation of the 1D PIC
simulation geometry. The one degree of spatial freedom
is taken as the x̂ direction, with the external magnetic
field ~B0 oriented in the x, z plane at an angle θk with
respect to x̂ to define the angle of wave propagation.
The beam population is given perpendicular and

parallel components with respect to ~B0 according to the
angle θb.

conditions. The timestep ∆t resolves all major frequen-
cies lower than the plasma frequency ωp, including the
ion plasma frequency ωi and the electron cyclotron fre-
quency Ωe), but we only concern ourselves with frequen-
cies approximately ω ≤ 10Ωi. To further assist with the
timestep, the electrons are given a mass of 20 times their
realistic mass, with care taken to ensure than doing so
does not discernibly affect mode structures and growth
rates. Because the collision timescale is much longer than
the ion cyclotron timescale, collisions are neglected.

To analyze the mode structure of the waves in the sim-
ulation, a 2D FFT over the spatial and temporal dimen-
sions of the perturbed fields is taken to give δ ~E(k, ω) and
δ ~B(k, ω) in Cartesian polarizations. From these the cir-
cular polarizations are calculated, with handedness de-
fined such that a right-handed mode circulates in the
same direction as an electron, and a left-handed mode
circulates in the same direction as an ion, regardless of
propagation direction. From the 1D nature of the simu-
lation, δBx = 0 to ensure ~∇ · ~B = 0. Consequently, δBz
solely represents the magnetically compressional compo-
nent of waves. To isolate the compressional component of
the electric field, however, the fields must be rotated. Ad-
ditionally, as ŷ ⊥ ~B0, δBy always represents the magnet-
ically shear component of waves. Meanwhile, Ex repre-
sents the electrostatic (longitudinal) component of waves.
While only the electric field can do work on ions, for the
ion beta in this case (β = 0.1), it should be noted that
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the magnetic energy content of these waves dominates the
electric energy content. For the purposes of the disper-
sion plots that follow in this paper, |~k| ≥ 0, with ω < 0
representing backwards propagation. While an alterna-
tive scheme where ω is kept positive and ~k is allowed
to be reversed would also suffice, the present convention
will aid in the illustration of mode structure in some in-
stances.

IV. IC WAVES PROPAGATING PARALLEL TO THE
MAGNETIC FIELD

To begin the scan over angular parameters θk and θb,
first consider the regime of wave propagation parallel (or
nearly parallel) to the external magnetic field, θk ≈ 0◦.
In contrast to the case of perpendicular propagation, here
only the cyclotron fundamentals ω = ±Ωσ, as well as an
unmagnetized contribution, enter into the dispersion re-
lation. Discounting the plasma oscillation, this regime is
the domain of three chief modes: two shear Alfvén modes
and the ion acoustic mode, which in this regime obeys
ω = kvs, where vs =

√
(Te + 3Ti)/mi is the ion sound

speed. While the former two modes are transverse and
have shear polarizations, the latter is electrostatic (longi-
tudinal). However, in the present parameters (vs < vA),
the ion acoustic mode is strongly damped and is not of
concern. In contrast, the shear Alfvén modes are poten-
tially excitable.

These two transverse modes are circularly polarized,
one right-handed and the other left-handed. At low fre-
quency, ω � Ωi, both branches obey ω = vAk, but be-
gin to diverge once ω approaches Ωi. The right-handed
branch thus does not resonantly couple to ions and passes
through Ωi unimpeded. The mode in this frequency
regime is termed a Whistler42 before finally resonating
the electrons at |Ωe|. In contrast, the left-handed branch
cannot pass through Ωi and instead resonates with ions.
This mode is thus termed the Alfvén-ion-cyclotron (AIC)
mode31 and can be excited by a temperature anisotropy
in the ions4. In mirror machines, such a mode can lead
to scattering of ions into the loss cone. In a plasma com-
posed of only thermal ions and electrons with purely par-
allel propagation (θk = 0◦), the mode structure is shown
in Fig. 2 where the right- and left-handed components
are distinguished. The resonance of the AIC mode with
the ion cyclotron resonance cone ω − Ωi = kvti is visible.

With the addition of an energetic beam population, ei-
ther of these shear modes can become excited depending
on the beam injection angle, which in turn determines the
beam resonance condition (Eq. 20). Figure 3 shows the
case of purely parallel propagation and beam injection
(θk = θb = 0◦) with the beam resonance lines indicated.
As a consequence of the purely parallel propagation, only
the p = ±1 beam resonance lines enter into the disper-
sion relation. Purely parallel beam injection then causes
these resonance lines to have their maximum possible
slope. With the present beam energy, these conditions

(a)

(b)

FIG. 2: Dispersion relations for right-handed (2a) and
left-handed (2b) components of the electric field for
purely parallel propagation (θk = 0◦) and no beam

population. Frequency is normalized with respect to the
background ion (deuterium) cyclotron frequency Ωi,
and the wavevector is normalized with respect to
vA/Ωi. The space where ω < 0 indicates backwards
propagation. The intensity at a particular mode is
indicated by the heat-map and is normalized with
respect to the maximum value. The Alfvén velocity

ω = kvA is indicated as a dashed line. The dotted lines
bound the approximate cone of strong ion cyclotron

damping, ω = 2kvti.

cause the p = −1 line to excite the right-handed mode
in the forward direction, and, to a lesser extent, the left-
handed mode in the backward direction, both at roughly
|ω| ≈ Ωi. There is also a mode associated with the beam
resonance lines themselves, for which the p = +1 line is
left-handed, and the p = −1 line is right-hand. Interest-
ingly, the ω < 0 portion of the right-handed waves are
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(a)

(b)

FIG. 3: The dispersion relation for right-handed (3a)
and left-handed (3b) components of the electric field for

purely parallel propagation (θk = 0◦) and a purely
parallel-streaming beam population (θb = 0◦). The

beam resonance lines for p = ±1 in Eq. 20 are indicated
with dotted lines.

also bent “into line” with the p = −1 resonance, crossing
ω = 0. The right-handed excitations bear resemblance to
the right-hand resonant and non-resonant modes studied
previously27,28. The excitation of the right-handed mode
with ω > 0 is extremely robust and may lead to ineffi-
cient but finite coupling to ions, as an increase in the ion
perpendicular temperature to 275 eV is produced in this
case. It is also possible that the much smaller left-handed
excitations may be producing this warming, which could
do so much more efficiently.

The effect of the beam population on the dispersion re-
lation for parallel beam injection can be more clearly seen
by solving for the linear waves numerically as outlined in
section II. The output of this numerical solving method
is shown in Fig. 4 for θk = θb = 0 and nb/ni = 0.01. The
points of the dispersion relation are colored according to
growth or damping rate, as is indicated in the color bar.
The red points indicate growth (instability), and the blue
points indicate damped modes. Grey indicates marginal
stability. In addition to the instability expected along the
right-handed mode for ω > 0, this plot also shows that
the ω < 0 portion of the right-handed branch is strongly
affected by a resonance with the beam resonance line for
p = −1 in Eq. 20. For numerical stability, the smallest
wavevector treated is kvA/Ωi = 0.1, and the smallest real
frequency treated is ω/Ωi = 0.09. Cyclotron resonance
cones are visible at ω/Ωi = ±1.

For near-perpendicular beam injection, the excitation
shifts predominantly to the backward-propagating right-
handed mode, as is shown in figure 5 for θb = 75◦, but
is much less robust than in the case of parallel beam
injection. This mode generates similar bulk heating as in
the previous case, however. If the beam injection angle is
increased further to θb = 90◦, mode activity diminishes
greatly, the beam resonance lines coupling poorly with
both shear Alfvén modes. Instead, the dominant mode
activity falls along the beam resonance lines themselves
at the hybrid ion resonance39 at ω/Ωi ≈ 1.9. This mode
is left-hand polarized for ω > 0 and right-hand polarized
for ω < 0.

In both of these cases, a significant portion of the wave
activity driving ion acceleration occurs for phase veloci-
ties within reach of the ion thermal distribution, particu-
larly for perpendicular beam injection. The resulting in-
crease in perpendicular temperature opens the possibility
of the AIC instability caused by temperature anisotropy,
and in a mirror (or FRC SOL) situation could lead to
scattering of ions into the loss cone. In the C-2U ex-
periment, the beam injection angle is close to θb = 75◦,
and so the near-perpendicular injection case examined
here likely presents a closer picture to the experimental
reality. However, evidence of such modes has not been
seen in this experiment, suggesting that either the domi-
nance of other modes or that the resultant perpendicular
heating is too subtle to observe.

V. IC WAVES PROPAGATING OBLIQUELY TO THE
MAGNETIC FIELD

If the angle of wave propagation is increased, the cir-
cularly polarized shear modes and ion acoustic mode ex-
plored in the previous section gradually transition into
linearly polarized shear and compressional Alfvén modes.
The former mode follows ω = k‖vA and is restricted
to ω < Ωi. This mode can therefore not propagate if
θk = 90◦. The latter mode follows ω = kv′A in the limit
of long wavelengths (as is relevant to this work), where
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FIG. 4: The dispersion relation for the real frequency ω
from numerical solution of Eq. 1 for θk = θb = 0 and
nb/ni = 0.01 for a hydrogen beam and deuterium
plasma, corresponding to Fig. 3. The color scale

indicates the imaginary part of the frequency γ. Red
indicates growth (instability), and blue indicates

damping. Grey indicates marginal stability. The dashed
lines indicate the Alfvén speed, and the dotted lines
indicate the beam resonance condition for p = ±1 in

Eq. 20.

v′A =
√
v2
A + v2

s ≈ vA in this parameter regime, and
converges to the lower-hybrid frequency ωLH for short
wavelengths. This mode is called variously the magne-
toacoustic, magnetosonic, or extraordinary mode.

The details of this evolution are partially determined
by the ion sound speed vs. If vs > vA, the ion acoustic
mode migrates to the new phase velocity v′A and adopts a
magnetically compressional polarization while the right-
handed shear mode “wilts”, shifting to follow ω = k‖vA
and becoming strongly damped. Conversely, if vs < vA,
the right-handed shear mode shifts to the phase velocity
v′A and becomes a compressional mode while the ion-
acoustic mode “wilts”, following ω = k‖vs and inevitably
becoming more strongly damped. In the present param-
eter regime, the latter case prevails, and as vs � vA, we
hereafter take v′A = vA.

In addition to its magnetically compressional char-
acter, the compressional mode possesses a hybrid elec-
tric character, having both a longitudinal and transverse
component. This longitudinal component will prove
highly effective at generating a fast ion tail, as is explored
in section VI. However, the shear mode also possesses a
longitudinal electric component, which for θk < 90◦ may
generate ion heating.

For θk ≈ 90◦, the compressional mode features reso-
nances with ion-Bernstein harmonics, particularly those

(a)

(b)

FIG. 5: The dispersion relation for right-handed (5a)
and left-handed (5b) components of the electric field for

purely parallel propagation (θk = 0◦) and nearly
perpendicularly injected beam population (θb = 75◦).

of the beam population. In this section, however, our
interest is the mode structure for θk ≈ 60◦, where the
Alfvén modes become dominantly linearly polarized, but
without ion-Bernstein resonances. The mode structure
without a beam population is shown in figure 6. Some
of the remnants of the parallel-propagation mode struc-
ture can be seen, such as in the slight upward or down-
ward curvature of the compressional mode for ω > 0 and
ω < 0, respectively.

The addition of the beam population excites these base
modes. In this parameter regime, the excitation is com-
parable between the compressional and shear modes, as
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(a)

(b)

FIG. 6: The dispersion relation for the compressional
(6a) and shear (6b) components of the magnetic field

for oblique propagation (θk = 60◦) and no beam
population.

is shown in figure 7 for θk = 60◦ and θb = 15. For near-
perpendicular beam injection, the mode activity gener-
ally diminishes and shifts to a compressional mode that
may be due to the p = 0 beam resonance line. In the
the former case, substantial perpendicular bulk heating
of the ions occurs, with the perpendicular ion tempera-
ture approximately doubling. In the latter case, there is
essentially no heating of background thermal ions.

(a)

(b)

FIG. 7: The dispersion relation for the compressional
(6a) and shear (6b) components of the magnetic field

for oblique propagation (θk = 60◦) and a beam
population injected at θb = 15◦. All available harmonics
of the beam resonance condition (Eq. 20) are shown.

VI. IC WAVES PROPAGATING PERPENDICULAR TO
THE MAGNETIC FIELD

In the regime θk ≈ 90◦, cyclotron harmonics, typi-
cally in the form of ion-Bernstein modes, assert them-
selves over the continuum modes of the previous section.
The cyclotron motion of the ions causes significant dis-
persion in the otherwise Alfvénic mode structure. As
these modes are typically electrostatic (longitudinal) in
nature, electrostatic physics with regard to wave-particle
coupling becomes particularly important. The case of
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FIG. 8: The dispersion relation for the longitudinal
(electrostatic) component for near-perpendicular

propagation (θk = 85◦) without a beam population.

purely perpendicular propagation is not examined be-
cause both mode excitation and wave-particle coupling
tend to be poor. A small but finite k‖ typically makes
a dramatic difference. The mode structure for the near-
perpendicular regime θk = 85◦ is shown in figure 8. The
compressional mode forms the spine of the wave activ-
ity, but resonances with the even cyclotron harmonics
can now be seen in the form of ion-Bernstein modes, in
contrast to the case of the previous section. These res-
onances are greatly amplified by the presence of a beam
population and create ion acceleration of sufficient inter-
est that the nonlinear interaction of these modes with the
background ions is given a separate subsection.

A. Linear Physics: Beam-Driven Ion-Bernstein Modes

When a beam population is added to the plasma, the
mode structure in figure 8 is modified in distinct ways
depending on the beam injection angle. These differ-
ences broadly manifest according to the relevance of the
cyclotron motion of the beam ions. For purely paral-
lel injection, the only beam cyclotron motion is due to
finite temperature. Thus, the background ions dictate
the IC mode structure. The case of perpendicular waves
driven by a streaming population has been investigated
extensively5,6,10–13, though mostly in a low-beta regime.
In such a regime, many cyclotron harmonics are excited
with the mode growth rate broadly monotonically de-
creasing for higher harmonics. The excitations, while
sharp in frequency space, are spread over a large range in
k at essentially constant frequency. In the present case,
however, where β = 0.1, the electromagnetic contribu-
tion is substantial, as is shown in figure 9 for θk = 85◦

FIG. 9: The dispersion relations for the electrostatic
component for near-perpendicular propagation

(θk = 85◦) and a beam population injected at θb = 0◦.

and θb = 0◦. Notably, the first few harmonics are mod-
ified by an excitation of the shear Alfvén mode. The
excitation of these modes is remarkably weak compared
with the other regimes examined, and as a partial conse-
quence produce weak ion heating. Of course, the princi-
ple of heating plasma by injection of a streaming species
is well-established but may be less effective with regard
to collective effects in a high-beta regime.

In the opposite regime, that of near-perpendicular
beam injection, the magnetoacoustic instability may be
excited, as has been investigated previously17–20,43. The
exemplary case of θk = 85◦ and θb = 75◦ is shown in fig-
ure 10 for both the numerically solved dispersion relation
and that found from PIC simulation. Both approaches
are in agreement, with the former providing sharper de-
tail of the intricate mode structure and the latter em-
phasizing the resonance locations. Cyclotron resonance
cones are still visible for the numerical solution, but have
been generally suppressed for clarity. The intersections of
the beam resonance lines and the compressional mode de-
termine the dominant excitations. Because both k‖ and
vb‖ are finite, Doppler shifting causes the resonant points
to deviate from the pure beam cyclotron harmonics. For
the angular parameters use in figure 10, the result is a
summation of harmonics in the positive propagation di-
rection and a dominant first beam cyclotron harmonic in
the backwards propagation direction. In real space, the
electrostatic component of this mode structure manifests
as coherent, periodic sharp peaks propagating in the for-
ward direction that ride atop a backwards-propagating
sinusoidal wave. The fundamental frequency for both is
approximately the beam cyclotron frequency, ω = 2Ωi.
Additionally, because the phase velocity of this mode is
much faster than the ion thermal speed (vA/vti ≈ 4),
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(a)

(b)

FIG. 10: The dispersion relations for the electrostatic
component for near-perpendicular propagation

(θk = 85◦) and a beam population injected at θb = 0◦.
The top plot (Fig. 10a) shows the numerical solution of

Eq. 1, and the bottom plot (Fig. 10b) shows the
equivalent dispersion relation from PIC simulation.

Here, both cases use the same beam density
(nb = 0.1ni) and are overlaid with all available

harmonics of the beam resonance condition (Eq. 20).

there is little coupling to the bulk motion of ions9. This
field configuration is highly amenable to allowing the
nonlinear generation of a fast-ion tail. This electrostatic
component of the mode also produces density fluctua-
tions in the plasma with an essentially identical mode
structure.

B. Nonlinear Physics: Wakefield Acceleration of Ions

The fast phase velocity vph = vA � vti of the magne-
toacoustic mode shown in figure 10 allows the mode sat-
uration level to depart from that predicted by quasilinear
theory. Instead, the waves grow until reaching a robust
saturation without strong damping on the bulk plasma.
The ionic wave trapping velocity37 vtr =

√
qiE/mik,

where E is the electric field of the wave and k is the
mode wavevector, grows with the wave amplitude un-
til reaching nearly the wave phase velocity. The cor-
responding wave saturation level is the Tajima-Dawson
field36 Es = miωvph/qi commonly encountered in wake-
field acceleration. In the present case, where the mode
frequency approximately corresponds to an integer mul-
tiple n of the ion cyclotron frequency and vph = vA, this
expression becomes9

Es(n) = nB0
vA
c
. (21)

The wave can then begin damping on the fastest thermal
particles, accelerating them to much higher energies. The
saturation level from simulation is approximately 60% of
the value predicted by Es(2), owing to the finite value
of vph/vti. In supplemental runs where the ions are ini-
tialized with a colder temperature, raising this ratio, the
saturation level indeed converges to that predicted by Eq.
21 for n = 2.

Because the electrostatic field of this mode is directed
nearly perpendicularly to the external magnetic field, the
wave cannot significantly displace ions from their start-
ing gyro-center, instead merely kicking them into a larger
cyclotron orbit. This effect, in combination with the high
phase velocity of the mode, results in the generation of
a large tail of fast ions without an increase in the bulk
temperature of the ions or induced transport, drifts, or
turbulence. The acceleration is chiefly in the perpen-
dicular velocity direction, but because the overall tem-
perature is not significantly increased, instabilities from
anisotropic temperatures are avoided. Additionally, be-
cause the mode frequency is an integer multiple of the ion
cyclotron frequency, cyclotron acceleration allows an ac-
celerated ion to be periodically recaptured by the wave,
increasing the efficiency of acceleration and propelling
ions to energies up to the beam energy Eb.

The result of this fast-ion tail is a dramatic increase
in the D-D fusion power. Letting Pth be the initial ther-
monuclear D-D fusion power and P be the fusion power
at a later time, the present mode generates P/Pth > 104,
providing a possible explanation for the anomalously high
neutron rate seen in the C-2U experiment8. Indeed, these
angular parameters seem to produce the maximum po-
tential for fusion enhancement. Figure 11 shows the fu-
sion enhancement across the full range of angular pa-
rameters scanned in this work, indicating a strong peak
for approximately θk = 85◦ and θb = 75◦. While the
mode excitation in other regimes is potentially far more
robust, even a relatively small excitation in this regime
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FIG. 11: The maximum fusion enhancement P/Pth for
a scan over angular parameters θk (vertical axis) and θb
(horizontal axis). Each angular parameter is sampled in
mostly 15◦ increments but also includes 5◦ and 85◦.

The bright peak in the upper right corner corresponds
to θk = 85◦ and θb = 75◦, which was used in generating

figure 10.

of angular parameters has far more potential for fast-ion
generation.

While the ions strongly interact with the wave in this
fashion, the electrons see an essentially static field and re-
spond adiabatically. The electrons briefly experience an
~E × ~B drift given by ~vEB ≈ −2vAŷ as each wave passes.
Such a mean shift in the electrons (by 2vA/vte ≈ 0.6) is
indeed seen in the simulation following the wave peaks.
Furthermore, because the electrons respond together in
this drift, the mean of the electron vy distribution merely
shifts by vEB ; turbulence is not created.

The growth of this mode also deviates from the usual
picture of quasilinear physics. In such a model, a positive
slope in the velocity distribution function (∂f/∂v > 0)
provides free energy for the wave to grow. More parti-
cles are decelerated by the wave than accelerated, and
the region of positive slope flattens. In the present case,
however, consider the total distribution of beam and ther-
mal ions, the phase velocity vA lies within a region where
∂f(vx)/∂vx < 0, and indeed the mode can still grow ex-
ponentially even with warmer ions, reinforcing the neg-
ative slope at the phase velocity. The resolution of this
situation is that the free energy is coming not from a
driver at the phase velocity, but rather at the beam ve-
locity, which has vb � vA. The coupling of the beam
resonance with the compressional mode allows the free
energy of the beam to be channeled into a wave with
phase velocity vph = vA. The beam population contains
sufficient such free energy to drive an exponentially grow-
ing mode even in a region of velocity space that is quasi-
linearly stable. The mode then grows until saturating
via Tajima-Dawson wakefield physics. The population of

fast beam particles then remains as a reservoir of free en-
ergy for the mode. Over the course of a simulation, the
beam population gradually loses energy to the mode and
thermal plasma, until the free energy is depleted, causing
the mode to dissipate.

Another distinction from typical quasilinear saturation
is in the realm of saturation through coupling to other
modes. Some considerations suggest that such a mecha-
nism does not play a substantial role in the present case.
First, the excitation of higher beam cyclotron harmon-
ics is a fundamental feature of this particular mode and,
in this case, coherently add together. Rather than dissi-
pating energy, the higher harmonics merely increase the
sharpness of the waveform until the wakefield saturation
level is reached. This conclusion is further strengthened
by the supplemental simulations with a colder ion popu-
lation, suggesting that the relationship between the wave
phase velocity and ion thermal speed are the crucial fac-
tors determine the saturation amplitude. If dissipation
through higher harmonics occurs, it does not seem to
appreciably affect the saturation level in this case.

VII. ENHANCEMENT FROM BEAM BUNCHING

The fast-ion tail generated by this mode is potentially
beneficial for efforts at fusion energy. The benefit and
efficiency of this process may be even further increased
if this mode is excited directly, without needing to grow
spontaneously from noise from the free energy provided
by the beam. A potential means of doing so is indi-
cated by the beam and ion density fluctuations also ex-
cited by the electrostatic component of this mode, similar
to the self-modulation instability in ion-driven wakefield
acceleration44–46, where an injected ion beam becomes
bunched at the plasma wavelength, improving wakefield
development. Seeding the beam density with bunches47
with the same wavelength as that of the mode could thus
immediately and robustly excite the mode, akin to play-
ing a musical instrument at a particular note.

If the beam density is seeded with square wave bunches
with period λb = πvA/Ωi, corresponding to the funda-
mental resonance of the mode at ω = 2Ωi, such an effect
is indeed seen. The fundamental resonance at ω = 2Ωi,
as well as its higher beam harmonics, become sharply
dominant in the dispersion relation, and the real-space
structure of the mode becomes more robust, consistent,
and coherent. Additionally, a significant boost to the fu-
sion rate growth is also seen, likely a result of this cleaner
mode structure.

To further examine the benefit to fusion rate from
beam bunching, the exemplary run with θk = 85◦ and
θb = 75◦ is repeated for a scan of beam velocity values
in the range vb/vti ∈ [4, 128]. Concerns of numerical sta-
bility define the upper limit. The cases of no bunching,
bunching corresponding to the resonance at ω = 2Ωi, and
bunching corresponding to ω = Ωi at each beam velocity
are treated. The maximum D-D fusion rate normalized
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FIG. 12: The maximum D-D fusion rate normalized to
the initial thermonuclear rate for various beam

velocities for the case θk = 85◦ and θb = 75◦. Black
points have no beam bunching; red points, bunching at

λb = πvA/Ωi, corresponding to the resonance at
ω = 2Ωi; and blue points, bunching at λb = 2πvA/Ωi,
corresponding to ω = Ωi. The purple point is the

approximate position of the observed fusion
enhancement in the C-2U experiment.

to the initial thermonuclear rate in each run is then tab-
ulated in figure 12 and compared with the approximate
result from the C-2U experiment. The singular case con-
sidered previously roughly corresponds to vb/vti = 16.

The points with no bunching indicate a power-law re-
lationship in the fusion enhancement of approximately
P/Pth ∝ (vb/vti)

5.6 at this ion temperature. With
bunching corresponding to the mode at ω = 2Ωi, there
is a further enhancement of fusion power over the un-
bunched case for vb/vti <∼ 16. In the same range,
the fusion enhancement from bunching corresponding to
ω = Ωi for comparison is indistinguishable from the un-
bunched case. This result makes sense. Not lying along
a beam resonance line, ω = Ωi is not spontaneously ex-
cited in the un-bunched case, and so attempting to do
so with bunching effectively produces inaccessible free
energy. This example demonstrates the importance of
choosing the correct mode at which to bunch the beam;
with Doppler-shifting of frequencies caused by finite k‖
and vb‖, this effort may be nontrivial in some cases.

For the higher range of beam velocities, vb/vti >∼ 16,
bunching at both ω = Ωi and ω = 2Ωi converges in the
resulting fusion enhancement. This departure from the
lower-energy beam regime is likely a result of a change
in the excited mode structure for beams of such energy.

Rather than the ion-Bernstein resonances as in the case
of figure 10, the n = 0 beam resonance mode become
dominant. As this mode has ω < Ωi and lies along a con-
tinuum, bunching at all harmonics ω = nΩi may becomes
equivalently ineffective. Nonetheless, for the regime con-
sidered in the C-2U experiment, bunching of the beam
population, perhaps by pre-exciting the magnetoacoustic
mode with a uniform beam or with RF techniques, may
allow a systematic increase in fusion efficiency. Here,
knowledge from the field of plasma accelerators may be
of significant assistance.

VIII. ANALOGY TO A PROTON-BORON-11 PLASMA

One of the ultimate goals of the successor experiments
of C-2U is to achieve a burning proton-boron-11 plasma
(pB11). It is thus worthwhile to briefly consider how
the physics examined thus far for a deuterium plasma
and proton beam applies to this case. The B11 (the a
fully ionized charge of +5) is treated as the background
plasma, and the protons are treated as the beam. Com-
pared to the previous cases then, essentially the only
change is that the background ion species is swapped for
boron-11, with the electron density increased to preserve
quasineutrality.

With the aim of reproducing the favorable fast-ion tail
generation seen for a deuterium plasma for θk = 85◦ and
θb = 75◦, an intuitive comparison of B11 and deuterium
may suggest that both should yield similar physics, as
the cyclotron frequencies are nearly identical, as well as
the ratio of Alfvén speed to ion thermal velocity. While
qi/mi is nearly the same in both cases, however, the
species plasma frequencies ωi are distinct, owing to the
+5 charge of B11. With the subscripts B and D re-
spectively denoting B11 and deuterium, (ωB/ωD)2 = 5.
Linear theory (Eq. 4) then dictates that this squared
ratio boosts the contribution of the background ions in
the plasma dielectric tensor and is effectively equivalent
to lowering the density of the beam population. Conse-
quently, the resonances of the compressional mode and
beam resonance lines seen in figure 10 are muted, and the
magnetoacoustic instability is overall much less robust.

Instead, electrostatic activity is found more robustly in
the slightly more oblique propagation regime considered
in section V. An example case is shown in figure 13. The
excitation broadly falls along the compressional Alfvén
mode. In real space, this mode structure manifests as
a wave two length scales: a smaller wavelength corre-
sponding to roughly λ = πvA/Ωi and a longer length
(about 5λ) over which the excitation is small. This be-
havior may be understood as a consequence of the low-
frequency component of the excitation in figure 13; in
the limit of a continuous sum over all frequencies, the
wave tends towards a delta-comb function with an infi-
nite length between peaks. The incomplete summation
in this case may lead to the long, but finite, stretches
between wave peaks.
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FIG. 13: The dispersion relation for the longitudinal
(electrostatic) component for a boron-11 plasma for
oblique propagation (θk = 75◦) with a proton beam

population injected at θb = 60◦.

Regarding enhancement of the fusion rate, some ion
acceleration is seen, similar to that seen in section V. In
this case, however, the fusion is of the beam-target na-
ture, so any enhancement is more modest compare to the
baseline level. It should also be noted that this simula-
tion has been made with parameters mimicking C-2U,
while those of future pB11 experiments may be some-
what different. Nonetheless, a successor FRC scheme in
the model of C-2U would likely feature an ion beta β < 1
in the SOL. This work seeks only draw attention to a
fundamental difference between B11 and deuterium as a
background plasma species. Additionally, these results
suggest that maintaining a relatively low beta of β = 0.1
in the SOL of these experiments may be beneficial for
fusion enhancement, despite any otherwise different pa-
rameters.

IX. CONCLUSIONS

This work has surveyed many of the beam-driven
modes that can potentially exist in the SOL of an FRC
geometry, examining that of the C-2U FRC experiment
as an exemplar. For a uniform deuterium plasma and
hydrogen (proton) beam, a scan was conducted over the
wave propagation and beam injection angles between 0◦

and 90◦. The observation of an enhanced fusion rate
in the C-2U experiment provides the chief impetus for
this study. In particular, the mode responsible should
preferably not cause turbulence or bulk temperature in-
crease, as such effects would be observable through var-
ious means such as loss of confinement. The capacity
for modes in each angular regime for generating fusion

enhancement though ion accelerating has been thus eval-
uated. As the fundamental linear physics is treated, these
results are also potentially applicable to devices of sim-
ilar parameters, particularly β < 1 and a large beam
pressure.

For instance, such conditions may be found in the
magnetopause, the boundary between the terrestrial and
stellar magnetic fields, where high-energy particles from
the solar wind may act similarly to the beam species
examined here48, or in active galactic nuclei, where the
physics examined here has relevance to the wave activ-
ity level and evolution of jets, halos, and lobes49. The
nonlinear physics of ion acceleration and bunching ev-
idenced by ion-Bernstein modes furthermore relies on
very similar physics to that seen in ion-driven wake-
field acceleration, particularly with regard to the self-
modulation instability45. Within this experimentally mo-
tivated regime, the linear physics of each regime can be
briefly summarized.

The regime of parallel propagation (θk ≈ 0◦) pre-
dominantly features two circularly polarized shear Alfvén
modes, either of which may be excited depending on the
beam resonance condition, which in turn depends on the
beam injection angle. In both cases, left-handed modes
strongly resonate with ions and can lead to a bulk in-
crease in the perpendicular temperature of the ion pop-
ulation. The mode excitation is generally less robust for
perpendicular beam injection, but an increased prefer-
ence for left-handed modes in this case partially compen-
sates for this effect with regard to ion acceleration. In
the case of the C-2U experiment, where beam injection
is nearly perpendicular to the external magnetic field,
it is expected that the latter situation would be more
likely. These modes have also been used extensively for
ion-cyclotron resonance heating (ICRH), both increasing
the plasma temperature and plugging a mirror geome-
try. Such heating normally incurs the AIC instability
(which goes by the same name as the beam-driven mode
examined here but is caused by temperature anisotropy),
however, which scatters particles into the loss cone. Sig-
nificant perpendicular heating and loss of confinement in
this manner has not been observed on the C-2U experi-
ment. If this mode is present in the SOL in this case, its
effects are (thankfully) sufficiently subtle to neglect.

In the regime of oblique propagation, θk ≈ 60◦, the
circularly polarized shear Alfvén modes are replaced by
linearly polarized compressional and shear Alfvén modes.
While the former mode can be prominent even in near-
perpendicular propagation, the latter cannot propagate
in the limit θk → 90◦. Ion acceleration in the oblique
propagation regime is generally modest, but is strongest
for parallel beam injection. For the C-2U experiment
then, and similar devices, it may be possible to neglect
the effects of these modes.

The most interesting regime occurs for near-
perpendicular propagation, θk ≈ 90◦. Here, electrostatic
ion-Bernstein modes rise to prominence at the beam cy-
clotron harmonics and alter the dispersion of the com-
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pressional Alfvén mode. With perpendicular beam in-
jection, the beam resonance lines form Doppler-shifted
resonances with the compressional Alfvén mode, which
we identify as the magnetoacoustic instability. The ex-
clusively fast phase velocity, electrostatic nature, and dis-
creteness in mode structure for this mode afford efficient
acceleration of a fast-ion tail without increasing the ion
temperature. This tail in turn dramatically increases the
fusion rate by P/Pth > 104 without incurring instabilities
from temperature anisotropy.

The fast phase velocity (vA) of this mode allows a high
saturation amplitude, found more familiarly in the field
of wakefield acceleration. This saturation level is almost
solely dependent on the phase velocity of the wave, de-
parting from the typical physics of quasilinear saturation.
Thus the wave can remain robust without strongly af-
fecting the bulk structure of the plasma. Rather, a small
population of the fastest ions are accelerated to very high
energies while leaving the bulk plasma intact, driving the
large increase in fusion rate without creating turbulence.
The fusion enhancement from this mode scales according
to a power law for a wide range of beam energies.

The electrostatic nature of this mode offers a poten-
tial method for targeted excitation. If the density of
the beam is bunched at the wavelength of the mode,
λ = πvA/Ωi, the mode reaches saturation immediately
rather than exponentially growing from noise, and the
real-space structure of the wave becomes even more ro-
bust and coherent. This purified excitation catalyzes ion
acceleration, creating more fusion enhancement than in
the case without bunching. With beam velocities beyond
vb/vti ≈ 16, however, the benefits to fusion enhancement
from bunching appear to diminish, likely because of a
change in the fundamental mode structure. The capacity
of the plasma to be so particularly excited by this mode
also suggests that ICRH tailored to this mode (rather
than the AIC mode) may effectively fulfill part of the
role of the beam. The mode may then be excited di-
rectly, energizing the plasma ions in a targeted manner.

One of the future goals of the successor experiments to
C-2U is the achievement of a burning pB11 plasma, war-
ranting a brief examination of the analogy of this magne-
toacoustic mode in such a plasma. While boron-11 and
deuterium have nearly identical cyclotron frequencies, a
difference in the species plasma frequencies owing to the
+5 charge of boron-11 effectively diminishes the role of
the beam, muting the beneficial magnetoacoustic mode
seen in the deuterium plasma case. Instead, continuum
modes, such as the compressional Alfvén mode, are fa-
vored for electrostatic activity. Some ion acceleration
is seen, but the contribution of such to the fusion rate
is likely small relative to the beam-target contribution.
However, this examination was done for C-2U parame-
ters, and the physics is likely somewhat different for a
pB11-burning plasma. Future work should more closely
at realistic parameters for these plasma species.

While linear plasma wave physics is a well-trod
path32,33, the microscopic beam-driven phenomena of the

SOL in an FRC geometry warrant a clear theoretical
understanding. In addressing this goal, the accelerator
physics at the heart of the C-2U and related experiments
perhaps inevitably comes to the fore. These results sug-
gest that the field of accelerator physics may be further
harnessed to in the support of fusion efforts.
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